
CS100M Fall 2007

Grading Guide: Project 5

April 14, 2008

The coded items below (e.g., c1e, s2a) indicate what a student's solution should accomplish. Codes
that begin with the letter �c� deals with correctness; codes that begin with �s� deals with style.

Grader

If a student's solution does not accomplish task c1a, for example, then write the task code �c1a� along
with any diagnostic remarks you can give. Count the number of correctness and style errors separately.

Items marked with ** count as two errors. In the table below, the top row lists the possible scores
(1 to 5). The next row lists the number of correctness errors corresponding to every score category. The
style score is determined similarly. Enter the total score (maximum of 10) in CMS as the project score.
If there are bonus questions, enter any bonus points separately in the �Bonus Bucket�, separate from the
project score.

Student

Read the grading guide for every project, even if you get a perfect score! Notice from the table below that
we often give one or two �freebies�, i.e., mistakes that don't cost you any points. Learn from working on
the project, and learn from any mistakes.

Scores

• c ands stand for correctness and style; see table below.

• parts with ** next to them means that they are double the value, *** for triple, etc.

Score 5 4 3 2 1 0

#correctness errors 0-2 3-5 6-8 9-12 13-16 17+
#style errors 0-1 2-3 4-6 7-9 10-15 16+

General

• (s0a) Use meaningful variable names

• (s0b) Appropriate indentation

• (s0c) Appropriate and concise comments throughout.

• (s0d) [up to 1* per m-�le] Comment header is required.

• (s0e) Reasonable line lengths; no horizontal scrolling

• (s0f) [up to **] No super�uous code

• (s0g) [up to **] Reasonably e�cient and concise code; a little ine�cient is OK

• (s0h) No debugging output

1

1 PROTEIN FOLDING

• (c0a) [2* max]Program successfully executes without crashing.(*for occasional,**for persistent)

• (c0b) [up to 1* per m-�le] Functions are de�ned as speci�ed by the project (parameters are of correct
type in correct order)

1 Protein Folding

• s1a : Code is neatly organized (easy for reader to understand what happens where). If subfunctions
are used, these are appropriately de�ned. If no subfunctions are used, code is broken up into easily
understood segments.

• s1b : Lattice/grid is displayed in an appropriate manner (no axis markings, messages are easily
readable, amino acids of di�erent types are easily distinguishable) (see �gure below)

• s1c : ALL intended messages are displayed somewhere on the grid, as opposed to the command
window.

• s1d : Student has chosen appropriate data structures for the problem (does not have to match the
solution).

• c1a : Displays a lattice/grid of size at least 15x15.

• c1b : Accepts a mouse click from the user using function ginput.

• c1c : [up to 4*] Correctly identi�es legal/illegal mouse click (1. the placement of the �rst amino acid
is always legal, 2. the placement of any consecutive amino acid must be exactly one square away in
a cardinal direction (NESW, no diagonals), 3. must not be on top of an already placed amino acid,
4. a click outside the grid is always considered illegal, but should not crash the program).

• s1e : Rounds mouse clicks to the nearest integer appropriately, so that the user does not have to
click exactly on the lattice point.

• c1d : Upon a legal mouse click: places an appropriately colored/shaped/whatever item indicating
an amino acid of the appropriate type has been placed there. (For this correctness point, let �legal�
mean whatever the student has considered legal, do not double penalize from c1c).

• c1e : Upon an illegal mouse click: displays a message indicating to the user that this is so. (For
this correctness point, let �illegal� mean whatever the student has considered illegal, do not double
penalize from c1c).

• s1f : This message lets the user know what went wrong and what to do next (something as simple
as �illegal click: try again� is ok, though we can encourage more informative error messages!)

• c1f : Indicates which kind of amino acid is next to be placed on the graph. Updates this correctly
upon mouse click.

• c1g : Upon placing all amino acids in original string: program no longer accepts clicks (or if it does,
displays a message to the e�ect of �No more amino acids� or something similar). Correctly identi�es
end of input string.

• c1h : Upon placing all amino acids in original string: Original amino acid string is displayed.

• c1i : Correctly calculates the number of HH contacts. A simple test case: hplayout('HHHPPH')
layed out in a clockwise rectangular manner should have 4 HH contacts (see �gure below).

• An example �gure is displayed below. Your solution may not look exactly like it, but should be as
readable as it.

2

2 FROM DNA TO PROTEIN

2 From DNA To Protein

• s2a : Code is neatly organized (easy for reader to understand what happens where). If subfunctions
are used, these are appropriately de�ned. If no subfunctions are used, code is broken up into easily
understood segments.

• s2b : Student has chosen appropriate data structures for the problem (does not have to match the
solution).

• c2a : MakeProtein('pdata8.txt') returns a structure with the following �elds: id, def, dna, and amino.

• c2b : Correctly �nds the protein id (line one, 13:25). It is ok if the student truncates this, provided
they do so correctly. Example test: using MakeProtein('fantasyP.txt') should return 'Somewhere'.

• c2c : [up to 2* - one for correct starting position and one for correct ending position] Correctly
obtains the protein de�nition (def). This occurs beginning at line 2 (13) and continues for a variable
number of lines. (May identify end of def �until keyword ACCESSION� or as �while line begins with
whitespace�, other correct solutions are also acceptable). Make sure the code handles a variable
number of lines. You may do so by trying it on pdata8.txt (def: 2 lines - WT1=Wilms' tumor ... 521
nt].), pdata7.txt (def: 1 line - Homo sapiens ... complete cds.), and fantasyP.txt (def: many lines -
686 chars - may vary depending on storage of def).

• s2c : Student should store def in a reasonable manner (best as a single line, but if they keep the line
boundaries they should do so in a way that def would be easy to modify/print).

• c2d : Correctly obtains the DNA sequence as all lines after ORIGIN until end of document (marked
by //).

• c2e : DNA sequence is stored with no numbers, spaces, or the //.

• s2d : File parsing is done in a reasonably e�cient manner - one pass through the �le.

• c2f : Correctly translates the DNA sequence into an amino acid sequence. Example test: fantasyP.txt
should return a sequence of 80 'P's. (If student has left spaces/numbers as in c2e, do not double
penalize).

• c2g : Utilizes the given function conversionTable.m correctly in doing the translation.

3

