CS100M Lecture 9 2008/2/19

= Previous Lecture:
= Developing algorithms
= Finite/inexact arithmetic
= Discrete vs. continuous

= Today’s Lecture:
= User-defined functions

= Announcements:
= Section this week in regular classrooms
= Prelim 1 on 2/21 (Thurs) 7:30pm

Vectorized addition

Matlab code: z= X + y

February 19, 2008 Lecture 9

Vectorized
element-by-element arithmetic operations
on arrays

— - [OIrrm
- OIrrm

- 1T
— 11T

>

. . N

—_

A dot (.) is necessary in front of these math operators

February 19, 2008 Lecture 9

Shift

+

v [2]1]s]s]

II |

. [s]efasln]

Matlab code: z= X + Yy

February 19, 2008 Lecture 9

Vectorized
element-by-element arithmetic operations between
an array and a scalar

T+ O 0+ OITTrm
11 - O 0 - OITTrm
T~ O 0~ OITTm
DN 7 o

0 /T
DN -~ B -~

A dot (.) is necessary in front of these math operators

The dotin [OH-* , [@-* , EE-/E not necessary but OK

February 19, 2008 Lecture 9

Lecture slides

Estimate the perimeter of an ellipse

major semiaxis = 5, minor semiaxis = 3

.
° Different methods
? based on different
! ways to “average”
° the major and

1 minor axes

February 19, 2008 Lecture 9




CS100M Lecture 9 2008/2/19

How many errors in the following statement Plotting an Ellipse
given that x = linspace(0,1,100) ?
2 2
Y = (3% .+ 1)/(L + x2) X4 Y) 2o

Easier representation for plotting:

[a1][e2] [ca] [p:a] (acos(t),bsin(t)) 0<=t<=2z

February 19, 2008 Lecture 9 9 February 19, 2008 Lecture 9 10

Convert from polar to Cartesian coordinates
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (X,y).

X % theta is in degrees.

Y r= input(“Enter radius: ”);
theta= input(“Enter angle in degrees: ”);

rads= theta*pi/180; % radian

Polar coordinates Cartesian coordinates
X= r*cos(rads);
y= r*sin(rads);
February 15,2008 Lecure 1 Febrary 15,2008 Leoure M
function [x, y] = polar2xy(r,theta) function [x, y] = polar2xy(r,theta)
% Convert polar coordinates (r,theta) to % Convert polar coordinates (r,theta) to
% Cartesian coordinates (X,y)- % Cartesian coordinates (X,Yy)-
% theta is in degrees. % theta is in degrees.
rads= theta*pi/180; % radian “C{\o\’\“\e rads= theta*pi/180; % radian
X= r*cos(rads); M"‘a\f%\l -® X= r*cos(rads);
y= r*sin(rads); PO y= r*sin(rads);

- - Think of polar2xy as a factory
r= input(“Enter radius: ”);
theta= input(“Enter angle in degrees: ”);

rads= theta*pi/180; % radian paﬂ‘ma theta
x= r*cos(rads); (P2 ot file
y= r*sin(rads); sor?

Lecture slides



CS100M Lecture 9 2008/2/19

Elevates reasoning

Why write user-defined functions? ) . o )
Nice to have sqrt function when designing a quadratic

. - equation solver.
1. Elevate reasoning by hiding a

details You get to think at the level of
ax?+bx+c=0

2. Facilitate top-down design Easier to understand the finished quadratic equation
solving code:

3. Software management :
(-b+sqgrt(b”2-4*a*c))/(2*a);

rl =
r2 = (-b-sqrt(b”"2-4*a*c))/(2*a);
Facilitates top-down design To specify a function...

E ... you describe how to use it, e.g.,

function DrawRect(a,b,L,W,c)

% Adds rectangle to current window.
% Assumes hold is on. Vertices are

% (a,b),(a+tL,b),(a+L,b+W), & (a,b+W).
% The color c is one of "r*,"g",
%y","b","w","k","c",or "m".

1. Focus on how to draw the flag given
just a specification of what the
functions drawRect and drawStar do.

2. Figure out how to implement

drawRect and drawsStar. Given the specification, the user of the
function doesn't need to know the detail

of the function—they can just use it!

To implement a function... Software Management
... you write the code so that the function Today:
lives up to” the specification. E.g., | write a function
EPerimeter(a,b)
x = [a atL atL a a]; that computes the perimeter of the ellipse
y = [b b b+W b+W b];
- R 2 2
Fill(x,y,C); (Xj +[Yj 1
a b

Don’t worry—you'll learn
these graphics functions
soon.

Lecture slides



CS100M Lecture 9 2008/2/19

Software Management

During this year :

You write software that makes extensive use
of

EPerimeter(a,b)

Imagine 100s of programs each with several
lines that reference EPerimeter

Software Management

Next year:

I discover a more efficient way to approximate
ellipse perimeters. | change the
implementation of

EPerimeter(a,b)

You do not have to change your software at
all.

function [x, y] = polar2xy(r,theta)
% Convert polar coordinates (r,theta) to

% Cartesian coordinates (X,y)-
% theta is in degrees.

rads= theta*pi/180; % radian cunctio” "‘\‘e“
x= r*cos(rads); P‘o‘a\"b(\l'
y= r*sin(rads); P

r= input(“Enter radius: ”);
theta= input(“Enter angle in degrees: ”);

rads= theta*pi/180; % radian
X= r*cos(rads);
y= r*sin(rads);

of) @

@Eart fle

sc(I\pt

function [x, yl = polar2xy(r,theta)

Input parameter
Function name list
(This file’s name is
polar2xy.m)

Output
parameter list

February 19, 2008 Lecture 9 28

Function header is the “contract” for how the function will be used (called)

You have this function:
function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r, theta) to
% Cartesian coordinates (x,y). Theta in degrees.

Code to call the above function:
% Convert polar (r1,t1) to Cartesian (x1,y1)
rl=1; tl=30;
[x1, y1]= polar2xy(rl, t1);
plot(x1, y1, *")

February 19, 2008 Lecture 9 20

Lecture slides

Function header is the “contract” for how the function will be used (called)

You have this function:
function [x, y] = polar2xy(r, theta)

Code //b%//

[x1, y1]= polar2xy(rl, t1);

February 19, 2008 Lecture 9 31




CS100M Lecture 9 2008/2/19

General form of a user-defined function

function [outl, out2, ..]= functionName (in1, in2, ...)
% 1-line comment to describe the function
% Additional description of function

Executable code that at some point assigns
values to output parameters outl, outZ, ...

= /nl, in2, ... are defined when the function begins execution.
Variables /n1, in2, ... are called function parameters and
they hold the function arguments used when the function is
invoked (called).

= outl, out?, ... are not defined until the executable code in
the function assigns values to them.

February 19, 2008 Lecture 9 2

Comments in functions

= Block of comments after the function header is

printed whenever a user types help
functionName at the Command Window

= The 1st line of this comment block is searched

whenever a user types lookfor someWord at the
Command Window

Every function should have a comment block after
the function header:

= 1stline succinctly describes what the function does

= Additional lines for more detail, if necessary

February 19, 2008 Lecture 9 33

function m = convertLength(ft,in)
% Convert length from feet (ft) and inches (in)
% to meters (m).

convertLength
= .; n= .;
d= convertLength(f,n);
= convertLength(f*12+n);
d= convertLength(f+n/12);
x= min(convertLength(f,n), 1);
= convertLength(pi*(f+n/12)"2);

mmmm

dotsInCircles.m

(functions with multiple input parameters)

(functions with a single output parameter)

(functions with multiple output parameters)
(functions with no output parameter)

February 19, 2008 Lecture 9 35

Accessing your functions

For now*, put your related functions and

scripts in the same directory.
| MyDirectory

dotsInCircles.m polar2xy.m

randDoublle.m drawColorDot.m

Any script/function that
calls polar2xy.m

*The path function gives greater flexibility. Not required in CS100M.

Why write user-defined function?

Elevate reasoning by hiding details
Facilitate top-down design
Software management

A function can be independently tested
easily

Keep a driver program clean by keeping
detail code in functions—separate, non-
interacting files

February 19, 2008 Lecture 9 Ed

Lecture slides




