
CS100M Lecture 9 2008/2/19

Lecture slides 1

Previous Lecture:
Developing algorithms
Finite/inexact arithmetic
Discrete vs. continuous

Today’s Lecture:
User-defined functions

Announcements:
Section this week in regular classrooms
Prelim 1 on 2/21 (Thurs) 7:30pm

February 19, 2008 Lecture 9 2

Vectorized addition

2 8.51x

1 102y+

3 9.53z=

Matlab code: z= x + y

February 19, 2008 Lecture 9 3

Vectorized
element-by-element arithmetic operations
on arrays

+

-

.*

./

A dot (.) is necessary in front of these math operators

.^

February 19, 2008 Lecture 9 4

Shift

2 8.51

x

y+

5 113.54z=

Matlab code: z= x + y

3

February 19, 2008 Lecture 9 5

./

A dot (.) is necessary in front of these math operators

Vectorized
element-by-element arithmetic operations between
an array and a scalar

+

-

*

/

+

-

*

.^ .^

.* .* ./The dot in not necessary but OK, ,

February 19, 2008 Lecture 9 6

−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

major semiaxis = 5, minor semiaxis = 3

Estimate the perimeter of an ellipse

Different methods
based on different
ways to “average”
the major and
minor axes

CS100M Lecture 9 2008/2/19

Lecture slides 2

February 19, 2008 Lecture 9 9

How many errors in the following statement
given that x = linspace(0,1,100) ?

Y = (3*x .+ 1)/(1 + x^2)

A: 1 B: 2 C: 3 D: 4

February 19, 2008 Lecture 9 10

Plotting an Ellipse

1
22

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

b
y

a
x

())sin(),cos(tbta
Easier representation for plotting:

π20 <=<= t

February 19, 2008 Lecture 9 13

Convert from polar to Cartesian coordinates

θ
r

y

x

Polar coordinates Cartesian coordinates

February 19, 2008 Lecture 9 14

% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

r= input(‘Enter radius: ’);
theta= input(‘Enter angle in degrees: ’);

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

function [x, y] = polar2xy(r,theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

r= input(‘Enter radius: ’);
theta= input(‘Enter angle in degrees: ’);

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

A function file

pola
r2xy

.m

(Part of) a

script file

function [x, y] = polar2xy(r,theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

r

theta

Think of polar2xy as a factory

x
y

CS100M Lecture 9 2008/2/19

Lecture slides 3

February 19, 2008 Lecture 9 18

Why write user-defined functions?

1. Elevate reasoning by hiding
details

2. Facilitate top-down design

3. Software management

February 19, 2008 Lecture 9 19

Elevates reasoning

Nice to have sqrt function when designing a quadratic
equation solver.

You get to think at the level of
ax2 + bx + c = 0

Easier to understand the finished quadratic equation
solving code:

:
r1 = (-b+sqrt(b^2-4*a*c))/(2*a);
r2 = (-b-sqrt(b^2-4*a*c))/(2*a);

:

February 19, 2008 Lecture 9 20

Facilitates top-down design

1. Focus on how to draw the flag given
just a specification of what the
functions drawRect and drawStar do.

2. Figure out how to implement
drawRect and drawStar.

To specify a function…

… you describe how to use it, e.g.,

function DrawRect(a,b,L,W,c)
% Adds rectangle to current window.
% Assumes hold is on. Vertices are
% (a,b),(a+L,b),(a+L,b+W), & (a,b+W).
% The color c is one of 'r‘,'g',
%'y','b','w','k','c',or 'm'.

Given the specification, the user of the
function doesn’t need to know the detail
of the function—they can just use it!

February 19, 2008 Lecture 9 22

To implement a function…

… you write the code so that the function
“lives up to” the specification. E.g.,

x = [a a+L a+L a a];
y = [b b b+W b+W b];
fill(x,y,c);

Don’t worry—you’ll learn
these graphics functions
soon.

February 19, 2008 Lecture 9 23

Software Management

Today:

I write a function
EPerimeter(a,b)

that computes the perimeter of the ellipse

1
22

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

b
y

a
x

CS100M Lecture 9 2008/2/19

Lecture slides 4

February 19, 2008 Lecture 9 24

Software Management

During this year :

You write software that makes extensive use
of

EPerimeter(a,b)

Imagine 100s of programs each with several
lines that reference EPerimeter

February 19, 2008 Lecture 9 25

Software Management

Next year:

I discover a more efficient way to approximate
ellipse perimeters. I change the
implementation of

EPerimeter(a,b)

You do not have to change your software at
all.

function [x, y] = polar2xy(r,theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

r= input(‘Enter radius: ’);
theta= input(‘Enter angle in degrees: ’);

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

A function file

pola
r2xy

.m

(Part of) a

script file

February 19, 2008 Lecture 9 28

function [x, y] = polar2xy(r,theta)

Output
parameter list

Function name
(This file’s name is
polar2xy.m)

Input parameter
list

February 19, 2008 Lecture 9 30

Function header is the “contract” for how the function will be used (called)

function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r, theta) to
% Cartesian coordinates (x,y). Theta in degrees.
…

% Convert polar (r1,t1) to Cartesian (x1,y1)
r1= 1; t1= 30;
[x1, y1]= polar2xy(r1, t1);
plot(x1, y1, ‘*’)
…

You have this function:

Code to call the above function:

February 19, 2008 Lecture 9 31

Function header is the “contract” for how the function will be used (called)

function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y). Theta in degrees.
…

% Convert polar (r1,t1) to Cartesian (x1,y1)
r1= 1; t1= 30;
[x1, y1]= polar2xy(r1, t1);
plot(x1, y1, ‘*’)
…

You have this function:

Code to call the above function:

CS100M Lecture 9 2008/2/19

Lecture slides 5

February 19, 2008 Lecture 9 32

General form of a user-defined function

function [out1, out2, …]= functionName (in1, in2, …)
% 1-line comment to describe the function
% Additional description of function

Executable code that at some point assigns
values to output parameters out1, out2, …

in1, in2, … are defined when the function begins execution.
Variables in1, in2, … are called function parameters and
they hold the function arguments used when the function is
invoked (called).
out1, out2, … are not defined until the executable code in
the function assigns values to them.

February 19, 2008 Lecture 9 33

Comments in functions

Block of comments after the function header is
printed whenever a user types help
functionName at the Command Window
The 1st line of this comment block is searched
whenever a user types lookfor someWord at the
Command Window
Every function should have a comment block after
the function header:

1st line succinctly describes what the function does
Additional lines for more detail, if necessary

f= …; n= …;
d= convertLength(f,n);
d= convertLength(f*12+n);
d= convertLength(f+n/12);
x= min(convertLength(f,n), 1);
y= convertLength(pi*(f+n/12)^2);

A: 1 B: 2 C: 3 D: 4

function m = convertLength(ft,in)
% Convert length from feet (ft) and inches (in)
% to meters (m).

. . .

Given this function:

How many proper calls to convertLength are shown below?

E: 5 or 0
February 19, 2008 Lecture 9 35

dotsInCircles.m

(functions with multiple input parameters)
(functions with a single output parameter)
(functions with multiple output parameters)

(functions with no output parameter)

Accessing your functions

For now*, put your related functions and
scripts in the same directory.

dotsInCircles.m

randDouble.m

polar2xy.m

drawColorDot.m

*The path function gives greater flexibility. Not required in CS100M.

MyDirectory

Any script/function that
calls polar2xy.m

February 19, 2008 Lecture 9 37

Why write user-defined function?

1. Elevate reasoning by hiding details
2. Facilitate top-down design
3. Software management
4. A function can be independently tested

easily
5. Keep a driver program clean by keeping

detail code in functions—separate, non-
interacting files

