- Previous Lecture:
- Developing algorithms
- Nested loops
- Today's Lecture:
- Developing algorithms
- Finite/inexact arithmetic
- Discrete vs. continuous
- Announcements:
- Project 2 due today at 6 pm
- Prelim 1 on 2/21 (Thurs) 7:30pm

Find the biggest rectangle

Resulting error

... after 100 hours
$.000000095 \times(100 \times 60 \times 60)$
0.34 second

At a velocity of $1700 \mathrm{~m} / \mathrm{s}$, missed target by more than 500 meters!

Plot based on 200 discrete points, but it looks smooth

February 14,2008

Built-in function linspace
$x=\operatorname{linspace}(1,3,5)$

1.0	1.5	2.0	2.5	3.0

\mathbf{X} is a vector-one-dimensional list of values \mathbf{X} is an array

February 14,2008
Lecture 8
13

Does this assign to y the values
$\sin \left(0^{\circ}\right), \sin \left(1^{\circ}\right), \ldots, \sin \left(90^{\circ}\right)$?
x = linspace(0, pi/2,90);
$y=\sin (x) ;$

A: yes B: no

February 14,2008
Lecture 8

Element-by-element arithmetic operations on arrays Also called "vectorized code"

```
x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);
```

February 14,2008
Lecture 8

$$
f(x)=\frac{\sin (5 x) \exp (-x / 2)}{1+x^{2}} \quad-2<=x<=3
$$

Yes!
$\mathrm{x}=$ linspace(-2,3,200);
$y=\sin \left(5^{*} x\right) . * \exp (-x / 2) . /(1+x . \wedge 2) ;$ plot(x, y)

Matlab code: $\mathbf{z =} \mathbf{x}-\mathbf{y}$

February 14, 2008

Vectorized code -a Matlab-specific feature - Code that perform element-byarithmetic/relational/logical ope operands in one step - Scalar operation: $x+y$ where x, y are scalar variables - Vectorized code: x+y where x, y are vectors of same		

Vectorized element-by-element arithmetic operations on arrays

