
CS100M Lecture 8 2008/2/14

Lecture slides 1

Previous Lecture:
Developing algorithms
Nested loops

Today’s Lecture:
Developing algorithms
Finite/inexact arithmetic
Discrete vs. continuous

Announcements:
Project 2 due today at 6pm
Prelim 1 on 2/21 (Thurs) 7:30pm

February 14, 2008 Lecture 8 3

Find the biggest rectangle

Draw 5 rectangles
that the user
specifies using
mouse clicks
Color the biggest
one red

Here's the biggest rectangle you drew!

February 14, 2008 Lecture 8 4

Find the biggest rectangle: develop an algorithm

What are the main
tasks?

Draw 5 yellow rects
Find the biggest one
Draw biggest one in red

Repetition is needed!
Which kind?

Finite iteration for-loop
Do I need to keep track
of all 5 rectangles?

No

Here's the biggest rectangle you drew!

February 14, 2008 Lecture 8 7

Patriot missile failure

In 1991, a Patriot
Missile failed,
resulting in 28 deaths
and about 100
injured. The cause?

www.namsa.nato.int/gallery/systems

February 14, 2008 Lecture 8 8

Inexact representation of time/number

System clock represented time in tenths of a
second: a clock tick every 1/10 of a second

Time = number of clock ticks x 0.1

.00011001100110011001100110011…

.0001100110011001100110011

“exact” value

value in Patriot system

Error of .000000095 every clock tick

February 14, 2008 Lecture 8 9

Resulting error

… after 100 hours

.000000095 x (100x60x60)

0.34 second

At a velocity of 1700 m/s, missed target by
more than 500 meters!

CS100M Lecture 8 2008/2/14

Lecture slides 2

February 14, 2008 Lecture 8 10

Plot a continuous function (from a table of values)

−1 0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

x sin(x)
0.00 0.0
1.57 1.0
3.14 0.0
4.71 -1.0
6.28 0.0

Plot based on 5 points

February 14, 2008 Lecture 8 11

−1 0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

Plot based on 200 discrete points,
but it looks smooth

February 14, 2008 Lecture 8 12

Generating tables and plots

x sin(x)
0.000 0.000
0.784 0.707
1.571 1.000
2.357 0.707
3.142 0.000
3.927 -0.707
4.712 -1.000
5.498 -0.707
6.283 0.000

x = linspace(0,2*pi,9);
y = sin(x);
plot(x,y)

−1 0 1 2 3 4 5 6 7

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

sin(x)

February 14, 2008 Lecture 8 13

Built-in function linspace

x = linspace(1,3,5)

1.0 1.5 2.0 2.5 3.0x

x is a vector—one-dimensional list of values

x is an array

February 14, 2008 Lecture 8 14

Built-in function linspace

x = linspace(1,3,5)

1.0 1.5 2.0 2.5 3.0x

x = linspace(0,1,101)

0.00 0.01 0.02 ... 0.99 1.00x

Left endpoint
Right endpoint

Number
of points

February 14, 2008 Lecture 8 15

Built-in functions accept arrays

x sin(x)
0.00 0.0
1.57 1.0
3.14 0.0
4.71 -1.0
6.28 0.0

0.00 1.57 3.14 4.71 6.28

sin

0.00 1.00 0.00 -1.00 0.00

and
return Arrays

How did we get all the sine values?

CS100M Lecture 8 2008/2/14

Lecture slides 3

February 14, 2008 Lecture 8 16

x = linspace(0,1,200);
y = exp(x);
plot(x,y)

x = linspace(1,10,200);
y = log(x);
plot(x,y)

Examples

February 14, 2008 Lecture 8 17

Does this assign to y the values
sin(0o), sin(1o),…,sin(90o)?

x = linspace(0,pi/2,90);

y = sin(x);

A: yes B: no

February 14, 2008 Lecture 8 20

Can we plot this?

21
)2/exp()5sin()(

x
xxxf

+
−

= for
-2 <= x <= 3

x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);
plot(x,y)

Element-by-element arithmetic
operations on arrays

Yes!

February 14, 2008 Lecture 8 21

Element-by-element arithmetic operations on arrays
Also called “vectorized code”

x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);

February 14, 2008 Lecture 8 22

Vectorized addition

2 8.51x

1 102y+

3 9.53z=

Matlab code: z= x + y

February 14, 2008 Lecture 8 23

Vectorized subtraction

2 8.51x

1 102y-

1 7.5-1z=

Matlab code: z= x - y

CS100M Lecture 8 2008/2/14

Lecture slides 4

February 14, 2008 Lecture 8 24

Vectorized code
—a Matlab-specific feature

Code that perform element-by-element
arithmetic/relational/logical operations on array
operands in one step

Scalar operation: x + y
where x, y are scalar variables

Vectorized code: x + y
where x, y are vectors of same shape and length

See FVL 4.1 for list of arithmetic operations

February 14, 2008 Lecture 8 25

Vectorized multiplication

2 8.51a

1 102bx

2 803c=

Matlab code: c= a .* b

February 14, 2008 Lecture 8 26

Vectorized
element-by-element arithmetic operations
on arrays

+

-

.*

./

A dot (.) is necessary in front of these math operators

.^

February 14, 2008 Lecture 8 27

Shift

2 8.51

x

y+

5 113.54z=

Matlab code: z= x + y

3

February 14, 2008 Lecture 8 28

Reciprocate

2 8.51

x

y/

.5 .12521z=

Matlab code: z= x ./ y

1

February 14, 2008 Lecture 8 29

./

A dot (.) is necessary in front of these math operators

Vectorized
element-by-element arithmetic operations between
an array and a scalar

+

-

*

/

+

-

*

.^ .^

.* .* ./The dot in not necessary but OK, ,

