- Previous Lecture:
- Iteration using while
- Today's Lecture:
- Developing algorithms
- Nested loops
- Announcements:
- Section this week in the labs (Read FVL 3.2 before lab)
- Project 2 due 2/14 (Thurs) at 6 pm
- Prelim 1 on 2/21 (Thurs) 7:30pm. If you have a conflict, tell us (email Kelly Patwell) now-no later than Wednesday evening.

Example: Nested Stars

Draw a black square

- Bigger than the biggest star
- Center at $(0,0)$
- Make side length 2.1

Draw a sequence of stars
-Stars get smaller
-Stars alternate in color
$-1^{\text {st }}$ star smaller than the sqr -radius $\mathrm{r}=1$ to start
-When to stop?

- when r small
s= 2.1; \% side length of square
drawRect(-s/2,-s/2,s,s,'k')

```
r= 1; k= 1;
```

while $r>0.1 \quad \% r$ still big
\% draw a star
if $\operatorname{rem}(k, 2)==1$ \%odd number
drawStar(0,0,r,'m') \%magenta
else
drawStar(0,0,r,'y') \%yellow
end
\% reduce r
$r=r / 1.2 ;$
$\mathrm{k}=\mathrm{k}+1$;
end
Feerray 12. 2008
ecture 7

Quiz 1

- 2 questions

- A quiz counts as an exercise and you can miss "several" without lowering your score. E.g., if there will be 15 exercises in total you can miss 3 (about 20\%).
- Answer the quiz using your registered clicker.
- Honor system: Use only your clicker and don't consult your neighbors or notes in any way.

Example: Is it prime?

- Write a program fragment to determine whether a given integer n is prime. Assume $n>1$.
- Reminder: rem(x, y) returns the remainder of x divided by y.


```
%Given n, display whether it is prime
divisor= 2;
while ( mod(n,divisor)~=0 )
    divisor= divisor + 1;
end
if (divisor==n)
    fprintf('%d is prime\n', n)
else
    fprintf(`%d is composite\n', n)
end
```

February 12. 2008
Example: Are they prime?

- Given integers a and b, sketch a program that lists all the prime numbers in the range [a, b].
- Assume $a, b>1$ and $a<b$. for $n=a: b$

Febuary 122.2008
Lecture 7
14

Example: Times Table

Write a script to print a times table for a specified range.


```
```

disp('Show the times table for a specified range')

```
```

disp('Show the times table for a specified range')
lo= input('What is the lower bound? ');
lo= input('What is the lower bound? ');
hi= input('What is the upper bound? ');
hi= input('What is the upper bound? ');
for r= lo:hi
for r= lo:hi
% at row r
% at row r
for c= lo:hi
for c= lo:hi
% at column c
% at column c
fprintf('% 6d ', r*c)
fprintf('% 6d ', r*c)
end
end
fprintf('\n')
fprintf('\n')
end

```
```

end

```
```

February 12, 2008

- Look for patterns
- Each entry is row \# \times col\# - Row\#, col\# increase regularly
- \Rightarrow Loop!!!
- What kind of loop?
- for-loop-since the range of the headings will be specified and increment regularly
- for each row \#, get the products with all the col\#s. Then go to next row \# and get products with all col\#s, ..
- \Rightarrow Nested loops
- Details: what will be the print format? Don't forget to start new lines. Also need initial input to specify the range.
eruary 12, $2008 \quad$ Lecture 7 19

The savvy programmer...

- Learns useful programming patterns and use them where appropriate
- Seeks inspiration by working through test data "by hand"
- Asks, "What am I doing?" at each step
- Declares a variable for each piece of information maintained when working the problem by hand
- Decomposes the problem into manageable subtasks
- Refines the solution iteratively, solving simpler subproblems first
- Remembers to check the problem's boundary conditions
- Validates the solution (program) by trying it on test data

February 12,2008
Leture
26

