- Previous Lecture:
- Iteration using for
- Today's Lecture:
- Iteration using while
- Review loops, conditionals using graphics
- Announcements:
- Read FVL 3.2 before lab next week
- Project 2 due Thursday, 2/14
- We do not use break in this course

Find n such that outer A and innerA converge

Now organize the tasks \rightarrow algorithm:
n gets initial value
Repeat until tolerance is reached: calculate inner A, outer A for current n diff= outer A - inner A
increase n

February 7, 2008
Lecture 6

```
% Convergence of inner and outer areas of regular n-gons on unit circle
fprintf('\n n\t A(n)\t B(n)\n');
% Initialize n, innerA, and outerA
n=3;
innerA= 3* sqrt(3)/4;
outerA= 3* sqrt(3);
tol=0.01; % convergence tolerance
% Compute and print areas until convergence
while (outerA - innerA > tol)
    fprintf('% 4d % 9.6f % 9.6f \n', n, innerA, outerA);
    n=n+1;
    innerA = (n/2)*\operatorname{sin}(2* pi/n);
    outerA = n* sin(pi/n)/cos(pi/n);
end
fprintf('% 4d % 9.6f % 9.6f \n', n, innerA, outerA);
fprintf('\% 4d \% 9.6f \% 9.6f \n', n, innerA, outerA);
```

Find n such that outerA and innerA converge

n gets initial value

while <tolerance isn't reached yet> calculate innerA, outerA for current n
diff= outer A - inner A
increase n end

Find n such that outerA and innerA converge

First, itemize the tasks:

- define how close is close enough
- select an initial n
- calculate innerA, outerA for current n
- diff= outerA - innerA
- close enough?
- if not, increase n, repeat above tasks

February 7, 2008
Lecture 6

Important Features of Iteration

- A task can be accomplished if some steps are repeated; these steps form the loop body
- Need a starting point
- Need to know when to stop
- Need to keep track of (and measure) progress

February 7, 2008
Leture 6


```
for k = 4:6
    disp(k)
    k= 9;
    disp(k)
end
```



```
Februar 7,2008
    disp(k)
    k= 9;
    disp(k)
end

```

for k 4:6 Not a condition (boolean expression)
disp(k)
k= 9;
hat checks whether k<=6
end
disp(k)
*
4 4

```



A Simple 3-line Script

Draw a black square.

Then a magenta disk.

Then a yellow star.

February 7, 2008

\begin{tabular}{|l|}
\hline \\
\begin{tabular}{l} 
\% drawDemo \\
close all \\
figure \\
axis equal off \\
hold on
\end{tabular} \\
\hline \begin{tabular}{l} 
drawRect (0,0,2,2,'k') \\
drawDisk(1,1,1,'m') \\
drawStar(1,1,1,' ' ' \()\)
\end{tabular} \\
\hline hold off \\
\hline
\end{tabular}

A general graphics framework
```

% drawDemo
close all
figure
axis equal off
hold on

```


```

s= 2.1; % side length of square
drawRect(-s/2,-s/2,s,s,'k')
r= 1; k= 1;
while r > 0.1 %r still big
% draw a star
if rem(k,2)==1 %odd number
drawStar(0,0,r,'m') %magenta
else
drawStar(0,0,r,'y') %yellow
end
% reduce r
r= r/1.2;
k= k + 1;
end

```
```

