- Previous Lecture:
- Branching
- Logical operators and values
- Today's Lecture:
- Iteration using for
- Introduce while
- Announcement
- Register your clicker!
- Adhere to the Code of Academic Integrity
- Section in classrooms this week

An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.

Question
A stick of unit length is split into two pieces.
The breakpoint is randomly selected. On
average, how long is the shorter piece?
Physical experiment?
Thought experiment? \rightarrow analysis
Computational experiment! \rightarrow simulation
Need to repeat many trials!
Lemenass .200s

\% one trial of the experiment

```
% one trial of the experiment
```

breakPt= rand(1);
breakPt= rand(1);
if breakPt<0.5
shortPiece= breakPt;
else
shortPiece= 1-breakPt;
end

Repeat n times		
\% one trial of the experiment breakPt= rand(1); shortPiece= min(breakPt, 1-breakPt);		
Take average		
Print result		
femenes 5.208	Leatue 5	\%

```
n= 10000; % number of trials
total= 0; % accumulated length so far
for k= 1:n
    % one trial of the experiment
    breakPt= rand(1);
    shortPiece= min(breakPt, 1-breakPt);
    total= total + shortPiece;
end
aveLength= total/n
fprintf('Average length is %f\n', ...
                                    aveLength)
    February, 2008
    Lecture 5
```


	oop examples
```for k= 2:0.5:3 disp(k)```	$\mathbf{k}$ takes on the values $2,2.5,3$ Non-integer increment is OK
end	
disp(k)	Default increment is 1
end	
```for k= 0:-2:-6 disp(k)```	$\mathbf{k}$ takes on the values $0,-2,-4,-6$ "Increment" may be negative
end	
```for k= 0:-2:-7 disp(k)```	k takes on the values $0,-2,-4,-6$ Colon expression specifies a bound
end	
$\begin{array}{r} \text { for } k=5: 2: 1 \\ \operatorname{disp}(k) \end{array}$	
end	
February 5. 2008	Leeture $5 \times 13$



Example: "Accumulate" a solution
\% Average 10 numbers from user input
$\mathrm{n}=10$; $\quad \%$ number of data values
for $k=1: n$
\% read and process input value
How many passes
through the loop will be completed? num= input('Enter a number: '); total= total + num;
end
ave= total/n; \% average of $n$ numbers
fprintf('Average is \%f\n', ave)


February 5. 2008
ecture 5


## Important Features of Iteration

- A task can be accomplished if some steps are repeated; these steps form the loop body
- Need a starting point
- Need to know when to stop
- Need to keep track of (and measure) progress

Find $n$ such that outerA and innerA converge

First, itemize the tasks:

- define how close is close enough
- select an initial n
- calculate innerA, outerA for current $n$
- diff= outer $A$ - inner $A$
- close enough?
- if not, increase n, repeat above tasks

As $n$ approaches infinity, the inscribed and circumscribed areas approach the area of a circle. How big should $n$ be?

