


```
% one trial of the experiment
breakPt= rand(1);
if breakPt<0.5
  shortPiece= breakPt;
else
  shortPiece= 1-breakPt;
end
```


Lecture 5

		for	loop examples	
for	k= di	2:0.5:3	k takes on the values 2,2.5,3 Non-integer increment is OK	
end		-DF()		
for	k=	1:4	k takes on the values 1,2,3,4	
	disp(k)		Default increment is 1	
end				
for	k=	0:-2:-6	k takes on the values 0,-2,-4,-6	
	disp(k)		"Increment" may be negative	
end			3	
for	k=	0:-2:-7	k takes on the values 0,-2,-4,-6	
	di	isp(k)	Colon expression specifies a bour	nd
end				
for	k=	5:2:1		
	di	lsp(k)		
end				
	February	5, 2008	Lecture 5	13

Find *n* such that **outerA** and **innerA** converge

First, itemize the tasks:

- define how close is close enough
- select an initial n
- calculate innerA, outerA for current n
- diff= outerA innerA
- close enough?

February 5, 2008

- if not, increase n, repeat above tasks

Lecture 5