- Previous Lecture:
- Branching
- Logical operators
- Today's Lecture:
- Logical operators and values
- More branching-nesting
- The idea of repetition
- Announcement:
- Project 1 (P1) due today at 6pm
- Please register your clicker by Monday $2 / 4$


## Logical operators

\&\& logical and: Are both conditions true?
E.g., we ask "is $L \leq x_{c}$ and $x_{c} \leq R$ ?"

In our code: $L<=x c \quad \& \& x c<=R$
|| logical or: Is at least one condition true?
E.g., we can ask if $x_{c}$ is outside of $[L, R]$,
i.e., "is $x_{c} \leq L$ or $R \leq x_{c}$ ?"

In code: $x c<=\mathrm{L}| | \mathrm{R}<=x c$
~ logical not: Negation
E.g., we can ask if $x_{c}$ is not outside $[L, R]$. In code: $\sim(x c<=L| | R<=x c)$

January 31, 2008 Lecture 4

6

Always use logical operators to connect simple boolean expressions

Why is it wrong to use the expression
L <= xc <= $\mathbf{R}$
for checking if $x_{c}$ is in $[L, R]$ ?
Example: Suppose $L$ is $5, R$ is 8 , and $x c$ is 10 . We know that 10 is not in [5,8], but the expression L <= xc <= R gives...

## "Truth table"

X, Y represent boolean expressions.
E.g., $\quad d>3.14$

| X | Y | $\mathrm{X} \& \& \mathrm{Y}$ <br> "and" | $\mathrm{X} \\| \mathrm{Y}$ <br> "or" | $\sim \mathrm{y}$ <br> "not" |
| :---: | :---: | :---: | :---: | :---: |
| T | T | T | T | F |
| T | F | F | T | T |
| F | T | F | T | F |
| F | F | F | F | T |



| "Truth table" |
| :--- |
| $X$ $Y$ $X \& \& Y$ <br> "and" X \|| Y <br> "or" $\sim X$ <br> "not" <br> 1 1 1 1 0 <br> 1 0 0 1  <br> 0 1 0 1 1 <br> 0 0 0 0  |

Variables a, b, and chave whole number values. True or false: This fragment prints "Yes" if there is a right triangle with side lengths a, b, and c and prints "No" otherwise.

```
if a^2 + b^2 == c^2
    disp('Yes')
else
    disp('No')
end
```

January 31, 2008 $\qquad$
A: true
B: false
a $=5$;
b $=3$;
c = 4;
if $\left(a^{\wedge} 2+b^{\wedge} 2==c^{\wedge} 2\right)$
disp('Yes')
else
disp( ' No')
end
This fragment prints "No" even though we have a right triangle!

```
a = 5;
b = 3;
c = 4;
if ((a^2+b^2==c^2) || (a^2+c^2==b^2)...
                    || (b^2+c^2==a^2))
    disp('Yes')
else
    disp('No')
end
```


## Conclusion

If $x_{c}$ is between $L$ and $R$
Then min is at $x_{c}$

Otherwise

Min value is at one of the endpoints

January 31,2008

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$


on the interval $[L, R]$ :

- $\quad \mathrm{s}$ the function strictly increasing in $[L, R]$ ?
-Which is smaller, $q(L)$ or $q(R)$ ?
-What is the minimum value of $q(x)$ in $[L, R]$ ?

January 31, 2008
Lecture 4
Set up structure first: if-else, condition
if $\quad$ L<=xc \&\& $\mathrm{xc}<=\mathrm{=R}$
Then min is at $x c$
else
Min is at one of the endpoints
end
Now refine our solution-in-progress. I'll choose to work on the
if-branch next

Refinement: filled in detail for task "min at xc"

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
```

    Min is at one of the endpoints
    end

Continue with refining the solution... else-branch next

Refinement: detail for task "min at an endpoint"

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
else
    % min is at one of the endpoints
    if xc < L
        qMin= L^2 + b*L + c;
    else
            qMin= R^2 + b*R + c;
        end
end
    anuary 31, 2008
                                    Lecture 4
                                    23
```

Final solution (given b, c, L, R, xc)
if $L<=x c$ \&\& $x c<=R$
\% min is at $x c$
$q M i n=x c^{\wedge} 2+b^{*} x c+c$;
else
\% min is at one of the endpoints
if $x c<L$
$q M i n=L^{\wedge} 2+b^{*} L+c ;$
else
$q M i n=R^{\wedge} 2+b * R+c ;$
end
end
An if-statement can branch-
appear within a ther kind of
just like any on

January 31, 2008
eeture 4

Notice that there are 3 alternatives $\rightarrow$ can use elseif!

```
if L<=xc && xc<=R
```

    \(\%\) min is at xc
    qMin= \(\mathrm{xc}^{\wedge 2}+\mathrm{b}^{*} \mathrm{xc}+\mathrm{c}\);
    else
\% min is at one of the endpoints
if $x c<L$
qMin= L^2 + b*L + c;
else
qMin= $\mathbf{R}^{\wedge} \mathbf{2}+\mathbf{b}^{*} \mathrm{R}+\mathrm{c}$;
end
end

January 31, 2008

```
if L<=xc && xc<=R
    % min is at xc
    qMin= xc^2 + b*xc + c;
elseif xc < L
    qMin= L^2 + b*L + c;
else
    qMin= R^2 + b*R + c;
end
```

True or false: We don't need the elseif keyword at all (in the Matlab language).

January 31, 2008
Lecture 4

## A: true <br> B: false



An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.

| If $x c$ is between $L$ and $R$ |
| :--- |
| Then min value is at $x c$ |
| Otherwise |
| Min value is at one of the endpoints |
|  |
|  |


| if $\mathrm{L}<=\mathrm{xc}$ \&\& $\mathrm{xc}<=\mathrm{R}$ |
| :--- |
| \% min is at xc |
| else |
| \% min is at one of the endpoints |
| end |
|  |
|  |


if $L<=x c$ \&\& $x c<=R$
$\%$ min is at $x c$
qMin= $x c^{\wedge} 2+b * x c+c ;$
else
\% min is at one of the endpoints
end

January 31, 2008

$$
\text { January 31, } 2008
$$

$\qquad$


## Question

A stick of unit length is split into two pieces.
The breakpoint is randomly selected. On average, how long is the shorter piece?

Physical experiment?
Thought experiment? $\rightarrow$ analysis
Computational experiment! $\rightarrow$ simulation
Need to repeat many trials!

| Question |
| :--- |
| A stick of unit length is split into two pieces. |
| The breakpoint is randomly selected. On |
| average, how long is the shorter piece? |
| Physical experiment? |
| Thought experiment? $\rightarrow$ analysis |
| Computational experiment! $\rightarrow$ simulation |
| $\quad$ Need to repeat many trials! |
| Lestres |

