

Always use logical operators to connect simple boolean expressions	
Why is it wrong to use the expression $L \iff \mathbf{R}$ for checking if x_c is in $[L,R]$?	
Example: Suppose L is 5, R is 8, and xc is 10. We know that 10 is not in [5,8], but the expression L <= xc <= R gives	
January 31, 2008 Lecture 4 8	

"Tru	th tat	ole″	Ma	itlab uses 0 to 1 to) represent fal D represent tr	se, ue
	Х	Y	X <mark>&&</mark> Y	X Y	~X	
			"and"	"or"	"not"	
	1	1	1	1	0	
	1	0	0	1		
	0	1	0	1	1	
	0	0	0	0		
January 31, 2008			L	ecture 4		10

Variables a, b, and c have whole number values. True or false: This fragment prints "Yes" if there is a right triangle with side lengths a, b, and c and prints "No" otherwise.						
	<pre>if a^2 + b^2 == c^2 disp(`Yes') else</pre>	A: true				
	disp('No') end	<u>B:</u> false				
	January 31, 2008 Lecture 4	11				

Conclusion

If x_c is between L and R

Then min is at x_c

Otherwise

January 31, 2008

Min value is at one of the endpoints

Lecture


```
Refinement: detail for task "min at an endpoint"
if L<=xc && xc<=R
% min is at xc
qMin= xc^2 + b*xc + c;
else
% min is at one of the endpoints
if %xc left of bracket
%min is at L
else %xc right of bracket
%min is at R
end
end
Continue with the refinement, i.e., replace comments with code</pre>
```



```
if L<=xc && xc<=R
% min is at xc
gMin= xc^2 + b*xc + c;
else
% min is at one of the endpoints
end</pre>
```


