- Previous Lecture:
- Branching
- Logical operators
- Today's Lecture:
- Logical operators and values
- More branching-nesting
- The idea of repetition
- Announcement:
- Project 1 (P1) due today at 6pm

Logical operators will short-circuit

- "It's a good thing."
- Consider the compound condition

$$
\mathrm{L}<=\mathrm{xc} \text { \&\& } \mathrm{xc}<=\mathrm{R}
$$

- If L is greater than $x c$, then the $1^{\text {st }}$ condition \Rightarrow false. Then the entire compound condition must give false as well, no matter what xc and R are.
- A \&\& condition short-circuits to false if the left operand evaluates to false
- A || condition short-circuits to \qquad if

[^0] Lecture 4 6

Logical operators

\&\& logical and: Are both conditions true?
|| logical or: Is at least one condition true?
E. g., we can ask if x_{c} is outside of $[L, R]$,
i.e., "is $x_{c} \leq L$ or $R \leq x_{c}$?"
In code: $x c<=L$ || $R<=x c$
~ logical not: Negation
E.g., we can ask if x_{c} is not outside $[L, R]$.

In code: $\sim(x c<=L| | R<=x c)$
January 31, 2008
Lecture 4

Always use logical operators to connect simple boolean expressions

Why is it wrong to use the expression
L <= xc <= R
for checking if x_{c} is in $[L, R]$?

Example: Suppose L is $5, R$ is 8 , and $x c$ is 10 . We know that 10 is not in $[5,8]$, but the expression L <= xc <= R gives...

January 31, 2008

$$
\text { January } 31,2008
$$

Lecture 4
Set up structure first: if-else, condition
if \quad L<=xc \&\& $\mathrm{xc}<=\mathrm{=R}$
Then min is at $x c$
else
Min is at one of the endpoints
end
Now refine our solution-in-progress. I'll choose to work on the
if-branch next

Refinement: detail for task "min at an endpoint"

```
if L<=xc && xc<=R
```

 \% min is at xc
 \(q M i n=x c^{\wedge} 2+b^{*} x c+c ;\)
 else
\% min is at one of the endpoints
if $\% x c$ left of bracket
\%min is at L
else \%xc right of bracket
\%min is at R
end
end
Continue with the refinement, i.e., replace comments with code
Final solution (given $b, c, L, R, x c$)
if $L<=x c$ \&\& $x c<=R$
$\%$ min is at xc
qMin= $\mathrm{xc}^{\wedge 2}+\mathrm{b}^{*} \mathrm{xc}+\mathrm{c}$;
else
\% min is at one of the endpoints
if $\mathrm{xc}<\mathrm{L}$
qMin= L^2 + b*L + c;
else
$\mathbf{q M i n}=\mathbf{R}^{\wedge} \mathbf{2}+\mathrm{b}^{\star} \mathrm{R}+\mathrm{c} ;$
end
end
Anif-statement can
appear within a branch-
just like any of kind of
statement!

Enuary 31,2008
Lecture 4

Top-Down Design

An algorithm is an idea. To use an algorithm you must choose a programming language and implement the algorithm.

[^0]: January 31, 2008

