
CS100M Lecture 4 2008/1/31

Lecture slides 1

Previous Lecture:
Branching
Logical operators

Today’s Lecture:
Logical operators and values
More branching—nesting
The idea of repetition

Announcement:
Project 1 (P1) due today at 6pm

January 31, 2008 Lecture 4 5

Logical operators
&& logical and: Are both conditions true?

E.g., we ask “is L≤xc and xc ≤ R ?”
In our code: L<=xc && xc<=R

|| logical or: Is at least one condition true?
E.g., we can ask if xc is outside of [L,R],
i.e., “is xc ≤ L or R ≤ xc ?”
In code: xc<=L || R<=xc

~ logical not: Negation
E.g., we can ask if xc is not outside [L,R].
In code: ~(xc<=L || R<=xc)

January 31, 2008 Lecture 4 6

Logical operators will short-circuit

“It’s a good thing.”
Consider the compound condition

L<=xc && xc<=R
If L is greater than xc, then the 1st

condition⇒false. Then the entire compound
condition must give false as well, no matter what
xc and R are.
A && condition short-circuits to false if the left
operand evaluates to false
A || condition short-circuits to _________ if

__.

January 31, 2008 Lecture 4 7

Always use logical operators to connect simple
boolean expressions

Why is it wrong to use the expression
L <= xc <= R

for checking if xc is in [L,R]?

Example: Suppose L is 5, R is 8, and xc is 10. We
know that 10 is not in [5,8], but the expression
L <= xc <= R gives…

January 31, 2008 Lecture 4 9

“Truth table”

0

0

0

1

X && Y
“and”

0

1

1

1

X || Y
“or”

00

110

01

011

~X
“not”

YX

Matlab uses 0 to represent false,
1 to represent true

January 31, 2008 Lecture 4 18

Start with pseudocode

If xc is between L and R

Min is at xc

Otherwise

Min is at one of the endpoints

We have decomposed the problem into three pieces! Can
choose to work with any piece next: the if-else
construct/condition, min at xc, or min at an endpoint

CS100M Lecture 4 2008/1/31

Lecture slides 2

January 31, 2008 Lecture 4 19

Set up structure first: if-else, condition

if L<=xc && xc<=R

Then min is at xc

else

Min is at one of the endpoints

end

Now refine our solution-in-progress. I’ll choose to work on the
if-branch next January 31, 2008 Lecture 4 20

Refinement: filled in detail for task “min at xc”

if L<=xc && xc<=R
% min is at xc
qMin= xc^2 + b*xc + c;

else

Min is at one of the endpoints

end

Continue with refining the solution… else-branch next

January 31, 2008 Lecture 4 21

Refinement: detail for task “min at an endpoint”

if L<=xc && xc<=R
% min is at xc
qMin= xc^2 + b*xc + c;

else
% min is at one of the endpoints
if %xc left of bracket

%min is at L
else %xc right of bracket

%min is at R
end

end

Continue with the refinement, i.e., replace comments with code
January 31, 2008 Lecture 4 23

Final solution (given b,c,L,R,xc)

if L<=xc && xc<=R
% min is at xc
qMin= xc^2 + b*xc + c;

else
% min is at one of the endpoints
if xc < L

qMin= L^2 + b*L + c;
else

qMin= R^2 + b*R + c;
end

end An if-statement can

appear within a branch—

just like any other kind of

statement!

January 31, 2008 Lecture 4 26

if L<=xc && xc<=R
% min is at xc
qMin= xc^2 + b*xc + c;

elseif xc < L
qMin= L^2 + b*L + c;

else
qMin= R^2 + b*R + c;

end

True or false: We don’t need the
elseif keyword at all (in the
Matlab language).

A: true

B: false

Top-Down Design
State problem

Define inputs
& outputs

Design algorithm

Convert algorithm
to program

An algorithm is an idea. To use an algorithm you must
choose a programming language and implement the
algorithm.

Decomposition

Stepwise
refinement

