- Previous Lecture:
- Variables \& assignment
- Input \& output
- Good programming style (meaningful variable names; use comments)
- Today's Lecture:
- Branching (conditional statements)

- So far, all the statements in our scripts are
executed in order
- We do not have a way to specify that some
statements should be executed only under
some condition
- We need a new language construct...

The Situation

Problem 1

Write a code fragment that prints "yes" if $q(x)$ increases across the interval and "no" if it does not.


```
So what is the requirement?
```

```
% Determine whether q increases
```

% Determine whether q increases
% across [L,R]
% across [L,R]
xc = -b/2;
xc = -b/2;
if ____
if ____
disp('Yes')
disp('Yes')
else
else
disp('No')
disp('No')
end
end
January 29, 2008

Consider the quadratic function $\qquad q(x)=x^{2}+b x+c$ on the interval $[L, R]$: - s the function strictly increasing in $[L, R]$? -Which is smaller, $q(L)$ or $q(R) ?$ What is the minimum value of $q(x)$ in $[L, R] ?$

Algorithm 1		
calculate q (L)		
calculate $q(R)$		
If $q(L)<q(R)$		
print " $q(L)$ less than $q(R)$ "		
otherwise		
print " $q(R)$ less than or equal to $q(L)$ "		
Jsanay 29,208	Lexue 3	21

Algorithm 2

calculate $q(L)$
calculate $q(R)$
If $q(L)$ is equal to $q(R)$
print " $q(L)$ is equal to $q(R)$ "
otherwise, if $q(L)<q(R)$
print " $q(L)$ less than $q(R)$ "
otherwise
print " $q(R)$ less than $q(L)$ "

```
% Fragment 1
qL= L*L + b*L + c; % q(L)
qR= R*R + b*R + c; % q(R)
if (qL < qR)
    disp('qL less than qR')
else
        disp('qR <= qL')
end
```

\% Fragment 1.2
$q L=L * L+b * L+c ; \% q(L)$
$q R=R * R+b * R+c ; \% q(R)$
if ($q \mathrm{~L}$ < qR)
disp('qL less than qR')
slope $=2 * L+b$;
else
disp('qR <= qL')
slope= 2*R + b;
end

Algorithm 2

calculate g(L)
calculate $q(R)$
If $q(L)$ is equal to $q(R)$
print " $q(L)$ is equal to $q(R)$ "
Otherwise, if $q(L)<q(R)$
print " $q(L)$ less than $q(R)$ "
otherwise
print " $q(R)$ less than $q(L)$ "

January 29, 2008

```
% Fragment 2
qL= L*L + b*L + c; % q(L)
qR= R*R + b*R + c; % q(R)
if (qL == qR)
    disp('qL and qR are the same')
elseif (qL < qR)
    disp('qL less than qR')
else
        disp('qR less than qL')
end
```

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:
What if you only want to know if $q(L)$ is close
to $q(R)$?
Cumer

```
% Fragment 3
tol= 1e-9; % tolerance
qL= L*L + b*L + c % q(L)
qR= R*R + b*R + c % q(R)
if (abs(qL-qR) < tol)
    disp('qL is close to qR')
end
```



```
Simple if construct
if condition
    statements to execute if condition is true
else
    statements to execute if condition is false
end
January 29, 2008
Lecture 3
\begin{tabular}{|l|}
\hline The even simpler if construct \\
if condition \\
statements to execute if condition is true \\
end \\
\\
\\
\hline
\end{tabular}
```

The general if construct
if condition1
statements to execute if condition1 is true
elseif condition2
statements to execute if condition1 is false
but condition2 is true
:
else
statements to execute if all previous conditions
are false
end
January 29, 2008

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:
-I S the function strictly increasing in $[L, R]$?
-Which is smaller, $q(L)$ or $q(R)$?
-What is the minimum value of $q(x)$ in $[L, R]$?

January 29, 2008 Lecture 3

Modified Problem 3

Write a code fragment that prints "yes" if xc is in the interval and "no" if it is not.

Boolean Expressions

$$
(\mathrm{L}<=\mathrm{xc}) \& \& \quad(\mathrm{xc}<=\mathrm{R})
$$

Their value is either true or false.
Can be made up of other (simpler) boolean expressions that are connected by boolean operators:
and, or, not

January 29, 2008
Lecture 3

