Topics: Branching (conditional statement)
Consider the quadratic function $q(x)=x^{2}+b x+c$ on the interval $[L, R]$:
Q_{1} : Does $q(x)$ increase across $[L, R]$?
Q_{2} : Which is smaller, $q(L)$ or $q(R)$?
Q_{3} : What is the minimum value of $q(x)$ in $[L, R]$?

```
% Does q increase across [L,R]?
    xc = -b/2;
    if
        --------------------
        disp('Yes')
    else
        disp('No')
    end
```

```
% Which is smaller, q(L) or q(R)?
% Fragment 1
    qL= L^2 + b*L + c; % q(L)
    qR= R^2 + b*R + c; % q(R)
        disp('qL less than qR')
    --------
        disp('qR less than or equal to qL')
    ___-_-_-_
```

```
% Fragment 2
    qL= L^2 + b*L + c; % q(L)
    qR= R^2 + b*R + c; % q(R)
    if _-----------------
        disp('qL equals qR')
    --------------------
        disp('qL less than qR')
    else
        disp('qR less than or equal to qL')
    end
```


Relational Operators

Operator	Meaning
$<$	less than
$>$	greater than
$<=$	less than or equal to
$>=$	greater than or equal to
$==$	equal to
$\sim=$	not equal to

What if you only want to know if $q(L)$ is close to $q(R)$?

```
% Fragment 3
    tol= 1e-9; % tolerance
    qL= L^2 + b*L + c; % q(L)
    qR= R^2 + b*R + c; % q(R)
    if ( abs(qL-qR) < tol )
            disp('qL is close to qR')
    end
```


Simple if construct

```
if Condition
    Statements to execute if the condition is true
    else
        Statements to execute if the condition is false
    end
```


The even simpler if construct

if Condition
Statements to execute if the condition is true end

The general if construct

```
if Condition 1
    Statements to execute if condition 1 is true
elseif Condition 2
    Statements to execute if condition 1 is false but condition 2 is true
\vdots
else
    Statements to execute if all previous conditions are false
    end
```


Rules of the if construct

- \qquad branch of statements is executed
 else clause
-

 elseif clauses

Back to the quadratic function $q(x)=x^{2}+b x+c$ on the interval $[L, R]$. Determine whether x_{c} is in $[L, R]$.

```
xc = -b/2;
if
    -----------------
        disp('Yes')
else
        disp('No')
end
```

A boolean expression evaluates to either true or false. Here is an example:

$$
\mathrm{L}<=\mathrm{xc} \text { \&\& } \mathrm{xc}<=\mathrm{R}
$$

A boolean expression can be made up of other (simpler) boolean expressions that are connected by boolean operators: and, or, not

Logical Operators

| expr1 | expr2 | expr1 \&\& expr2 | expr1 \|| expr2 | \sim expr2 |
| :---: | :---: | :---: | :---: | :---: |
| F | F | | | |
| F | T | | | |
| T | F | | | |
| T | T | | | |

