Topics: Branching (conditional statement)

Consider the quadratic function $q(x) = x^2 + bx + c$ on the interval [L, R]:

- Q_1 : Does q(x) increase across [L, R]?
- Q_2 : Which is smaller, q(L) or q(R)?
- Q_3 : What is the minimum value of q(x) in [L, R]?

```
% Does q increase across [L,R]?
 xc = -b/2;
 if _____
    disp('Yes')
  else
    disp('No')
  end
% Which is smaller, q(L) or q(R)?
% Fragment 1
                                               % Fragment 2
  qL = L^2 + b*L + c; % q(L)
                                                 qL = L^2 + b*L + c; \ \% q(L)
  qR = R^2 + b*R + c; \ \% q(R)
                                                 qR = R^2 + b*R + c; \ \% q(R)
                                                 if _____
  _____
    disp('qL less than qR')
                                                     disp('qL equals qR')
    disp('qR less than or equal to qL')
                                                     disp('qL less than qR')
                                                 else
                                                     disp('qR less than or equal to qL')
  _____
                                                 end
```

Relational Operators

Operator	Meaning	
<	less than	
>	greater than	
<=	less than or equal to	
>=	greater than or equal to	
==	equal to	
$\sim =$	not equal to	

What if you only want to know if q(L) is close to q(R)?

```
% Fragment 3
  tol= 1e-9;  % tolerance
  qL= L^2 + b*L + c; % q(L)
  qR= R^2 + b*R + c; % q(R)
  if ( abs(qL-qR) < tol )
      disp('qL is close to qR')
  end</pre>
```

Simple if construct

if Condition Statements to execute if the condition is true else Statements to execute if the condition is false end

The even simpler if construct

if Condition Statements to execute if the condition is true end

The general if construct

if Condition 1
 Statements to execute if condition 1 is true
elseif Condition 2
 Statements to execute if condition 1 is false but condition 2 is true
:
else
 Statements to execute if all previous conditions are false
end

Rules of the if construct

•	• bra	nch of statements is executed
•	• els	e clause
•	• els	eif clauses

Back to the quadratic function $q(x) = x^2 + bx + c$ on the interval [L, R]. Determine whether x_c is in [L, R].

```
xc = -b/2;
if ______
disp('Yes')
else
    disp('No')
end
```

A boolean expression evaluates to either true or false. Here is an example:

```
L<=xc && xc<=R
```

A boolean expression can be made up of other (simpler) boolean expressions that are connected by boolean operators: and, or, not

Lugical Operators	Logical	Operators
-------------------	---------	------------------

0				
expr1	expr2	expr1 && expr2	$expr1 \mid\mid expr2$	$\sim expr2$
F	F			
F	Т			
Т	F			
Т	Т			