Announcements

- P6 due today at 6pm
- Final exam:
 - Thurs, 5/8, 9am, Barton East & Central
- Please fill out course evaluation on-line, see "Exercise 15"
- Regular office/consulting hours end tomorrow.
 Revised hours next week.
- Pick up papers during consulting hours at Carpenter
- Read announcements on course website!

May 1, 2008

1 - - - - - - 00

Previous Lecture:

- Models and data
 - Congressional apportionment
 - Sensitivity analysis
- Today's Lecture:
 - Simulation—Google "page rank"
 - Optimization—the traveling salesperson problem

Quantifying Importance

How do you rank web pages for importance given that you know the link structure of the Web, i.e., the in-links and out-links for each web page?

A related question:

How does a deleted or added link on a webpage affect its "rank"?

May 1, 2008

Lecture 28

Background

Index all the pages on the Web from I to n. (n is around ten billion.)

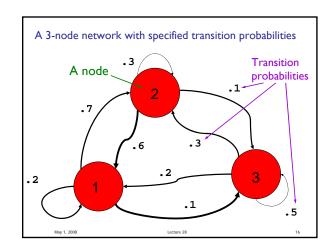
The PageRank algorithm orders these pages from "most important" to "least important".

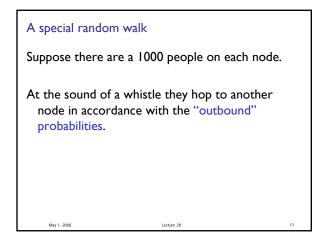
It does this by analyzing links, not content.

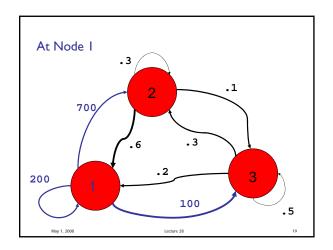
May 1, 2008

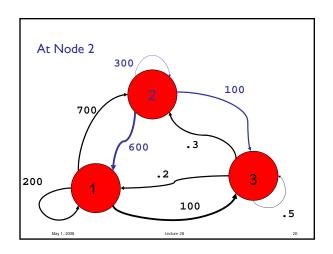
Lecture 28

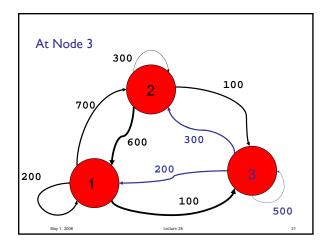
Key Ideas


The Transition Probability Matrix

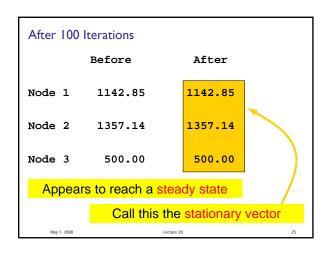

A very special random walk

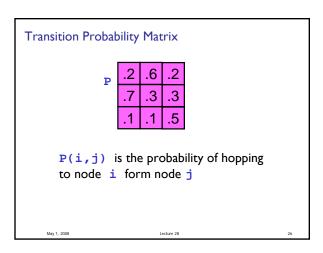

The Connectivity Matrix

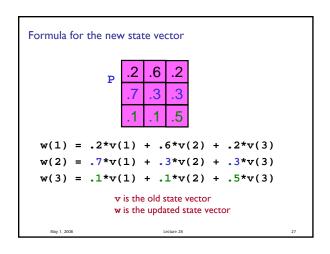

May 1, 2008


Lecture 28

New Distribution						
	Before	After				
Node 1	1000	1000				
Node 2	1000	1300				
Node 3	1000	700				
May 1, 2008		Lecture 28	22			


Repeat			
	Before	After	
Node 1	1000	1120	
Node 2	1300	1300	
Node 3	700	580	
May 1, 2008		Lecture 28	23


```
Time 0 [1000 1000 1000]


Time 1 → [1000 1300 700]

Time 2 → [1120 1300 580]

The state of each node at a specific time
```



```
The general case

function w = Update(P,v)
% Update state vector v based on transition
% probability matrix P to give state vector w
n = length(v);
w = zeros(n,1);
for i=1:n
    for j=1:n
        w(i) = w(i) + P(i,j)*v(j);
    end
end
```

```
To obtain the stationary vector...

function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol
v = w;
w = Update(P,v);
err = max(abs(w-v));
k = k+1;
end

May 1.2008 Lecture 28
```

```
A random walk on the Web

Repeat:

You are on a webpage.

There are m outlinks.
Choose one at random.
Click on the link.

What if there are no outlinks?
We'll deal with dead ends later.
```

A random walk on the Web

Repeat:

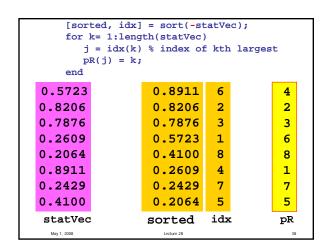
You are on a webpage.

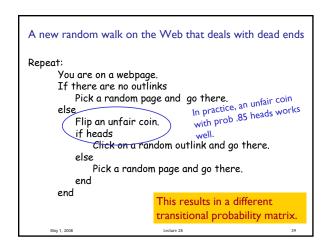
There are m outlinks.

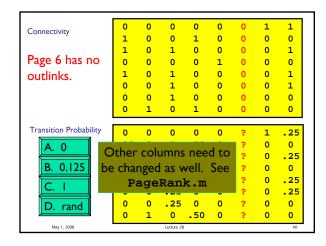
Choose one at random.

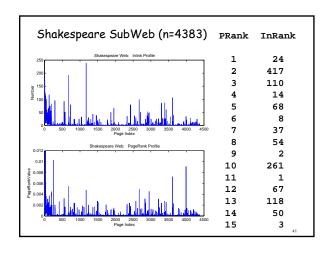
Click on the link.

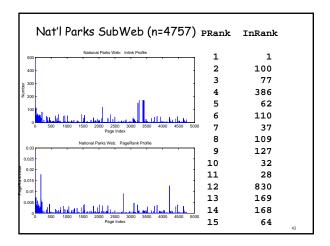
Need transition probabilities


Eventually will get to steady state

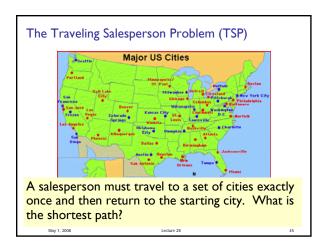

A Connectivity Matrix G(i,j) islif 0 1 0 0 1 0 1 0 there is a link 1 0 0 0 0 0 1 1 on page j to 0 1 0 0 1 0 0 0 page i. 1 0 1 1 0 1 0 0 (I.e., you can 0 0 0 1 0 0 1 0 get to i from 0 1 1 0 0 1 0 0 j.) 1 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0

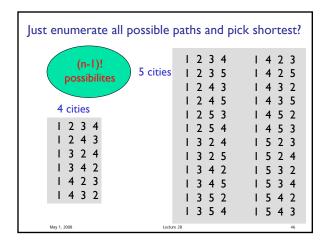

Connectivity (G) \rightarrow Transition Probability (P) [n,n] = size(G); P = zeros(n,n); for j=1:n P(:,j) = G(:,j)/sum(G(:,j));end


	0	0	0	0	0	0	1	1
Connectivity	1	0	0	1	0	0	0	0
	1	0	1	0	0	1	0	1
	0	0	0	0	1	0	0	0
	1	0	1	0	0	0	0	1
	0	0	1	0	0	0	0	1
	0	0	1	0	0	0	0	0
	0	1	0	1	0	0	0	0
l _	0	0	0	0	0	0	1	.25
Transition	.33	0	0	.50	0	0	0	0
Probability	.33	0	.25	0	0	1	0	.25
,	0	0	0	0	1	0	0	0
	.33	0	.25	0	0	0	0	.25
	0	0	.25	0	0	0	0	.25
	0	0	.25	0	0	0	0	0
	0	1	0	.50	0	0	0	0
May 1, 2008			Lecture 28					36


Stationary vector represents how "popular" the pages are → PageRank							
	0.5723		0.8911	6		4	
	0.8206		0.8206	2		2	
	0.7876		0.7876	3		3	
	0.2609		0.5723	1		6	
	0.2064		0.4100	8		8	
	0.8911		0.2609	4		1	
	0.2429		0.2429	7		7	
	0.4100		0.2064	5		5	
	statVec		sorted	idx	idx p		
	May 1, 2008		Lecture 28			37	







Optimization

- Find the "best" of something
 - the shortest path
 - the most cost efficient production line
 - the lowest-risk investment strategy
- There is a search (solution) space
- There is some kind of objective function
- There are usually constraints
- Usually willing to accept suboptimal solution if it is "good enough" and is cheap to compute

May 1, 2008 Lecture 28

Just enumerate all possible paths and pick shortest?

(n-1)!
possibilites

If a computer can process I billion itineraries a second, how long does it take to solve a 100-city TSP?

About a century...

A heuristic is a computational rule-of-thumb that points us towards optimality but without any guarantee that optimality will actually be achieved.

A heuristic for the TSP:

From the current location, choose to visit the <u>nearest unvisited</u> city

May 1, 2008

Organization of the TSP program

% Visit n cities, starting from city 1
Put cities 2:n in unvisited list
for k= 2:n

Find nearest unvisited city, c
Put city c in the tour path
Remove city c from unvisited list

Return to city 1

What we learned...

- Develop/implement algorithms for problems
- Develop programming skills
 - Design, implement, document, test, and debug
- Programming "tool bag"
 - Control flow (if-else; loops)
 - Functions for reducing redundancy
 - Data structures
 - Graphics
 - File handling

May 1, 2008

Lecture 28

What we learned... (cont'd)

- Applications and concepts
 - Image and sound
 - Sorting and searching
 - Divide-and-conquer strategies
 - Approximation and error
 - Simulation and optimization
 - Computational effort and efficiency

May 1, 2008

Lecture 28

Final Exam

- Thurs 5/8, 9-11:30am, Barton East and Central.
- Covers entire course, but emphasizes material after Prelim 3
- Closed-book exam, no calculators
- Bring student ID card
- Check for announcements on webpage:
 - Study break office/consulting hours
 - Review session time and location
 - Review questions
 - List of potentially useful functions

May 1, 2008

ecture 28