- Previous Lecture:
- Models and data
- Congressional apportionment
- Sensitivity analysis
- Today's Lecture:
- Simulation-Google "page rank"
- Optimization-the traveling salesperson problem


```
The general case
function w = Update(P,v)
% Update state vector v based on transition
% probability matrix P to give state vector w
n = length(v);
w = zeros(n,1);
for i=1:n
    for j=1:n
        w(i) = w(i) + P(i,j)*v(j);
    end
end
may 1,2008
Lecture 28
```

```
To obtain the stationary vector...
function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol
    v = w;
    w = Update(P,v);
    err = max(abs(w-v));
    k = k+1;
end
    May 1,2008
                            Lecture 28

Connectivity (G) \(\rightarrow\) Transition Probability ( P )
\([\mathrm{n}, \mathrm{n}]=\operatorname{size}(\mathrm{G}) ;\)
P = zeros(n,n);
for \(\mathrm{j}=1: \mathrm{n}\)
\(P(:, j)=G(:, j) / \operatorname{sum}(G(:, j)) ;\)
end

May 1, 2008
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{8}{*}{Connectivity} & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline & 0 & 0 & 0 & 0 & & 0 & 0 & 0 \\
\hline & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\hline \multirow{8}{*}{Transition Probability} & 0 & 0 & 0 & 0 & 0 & 0 & 1 & . 25 \\
\hline & . 33 & 0 & 0 & . 50 & 0 & 0 & 0 & 0 \\
\hline & . 33 & 0 & . 25 & 0 & 0 & 1 & 0 & . 25 \\
\hline & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline & .33 & 0 & . 25 & 0 & 0 & 0 & 0 & . 25 \\
\hline & 0 & 0 & . 25 & 0 & 0 & 0 & 0 & . 25 \\
\hline & 0 & 0 & . 25 & 0 & 0 & 0 & 0 & 0 \\
\hline & 0 & 1 & 0 & . 50 & 0 & 0 & 0 & 0 \\
\hline May1, 2008 & & & Lectue 28 & & & & & 36 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Stationary vector represents how "popular" the pages are \(\rightarrow\) PageRank} \\
\hline 0.5723 & 0.8911 & 6 & 4 \\
\hline 0.8206 & 0.8206 & 2 & 2 \\
\hline 0.7876 & 0.7876 & 3 & 3 \\
\hline 0.2609 & 0.5723 & 1 & 6 \\
\hline 0.2064 & 0.4100 & 8 & 8 \\
\hline 0.8911 & 0.2609 & 4 & 1 \\
\hline 0.2429 & 0.2429 & 7 & 7 \\
\hline 0.4100 & 0.2064 & 5 & 5 \\
\hline statVec & sorted & idx & pR \\
\hline may 1, 2008 & Leture 28 & & 37 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{```
[sorted, idx] = sort(-statVec);
for k= 1:length(statVec)
    j = idx(k) % index of kth largest
    pR(j) = k;
end
```} \\
\hline 0.5723 & 0.8911 & 6 & 4 \\
\hline 0.8206 & 0.8206 & 2 & 2 \\
\hline 0.7876 & 0.7876 & 3 & 3 \\
\hline 0.2609 & 0.5723 & 1 & 6 \\
\hline 0.2064 & 0.4100 & 8 & 8 \\
\hline 0.8911 & 0.2609 & 4 & 1 \\
\hline 0.2429 & 0.2429 & 7 & 7 \\
\hline 0.4100 & 0.2064 & 5 & 5 \\
\hline statVec & sorted & idx & pR \\
\hline May1, 2008 & Leture 28 & & 36 \\
\hline
\end{tabular}

\section*{Optimization}
- Find the "best" of something
- the shortest path
- the most cost efficient production line
- the lowest-risk investment strategy
- There is a search (solution) space
- There is some kind of objective function
- There are usually constraints
- Usually willing to accept suboptimal solution if it is "good enough" and is cheap to compute

The Traveling Salesperson Problem (TSP)

A salesperson must travel to a set of cities exactly once and then return to the starting city. What is the shortest path?
\(\qquad\)

A heuristic is a computational rule-of-thumb that points us towards optimality but without any guarantee that optimality will actually be achieved.
- A heuristic for the TSP:

From the current location, choose to visit the nearest unvisited city

May 1, 2008
Lecture 28

What we learned...
- Develop/implement algorithms for problems
- Develop programming skills
- Design, implement, document, test, and debug
- Programming "tool bag"
- Control flow (if-else; loops)
- Functions for reducing redundancy
- Data structures
- Graphics
- File handling

May 1,2008
Lecture 28

\section*{Final Exam}
- Thurs 5/8, 9-11:30am, Barton East and Central.
- Covers entire course, but emphasizes material after Prelim 3
- Closed-book exam, no calculators
- Bring student ID card
- Check for announcements on webpage:
- Study break office/consulting hours
- Review session time and location
- Review questions
- List of potentially useful functions

May 1,2008
Lecture 28```

