

State Vector						
Time O	[1000 1000	1000]				
Time 1 \rightarrow	[1000 1300	700]				
Time 2 \rightarrow	[1120 1300	580]				
The state of each node at a specific time						
May 1, 2008	Lecture 28	24				

	0	0	0	0	0	0	1	1
Connectivity	1	0	0	1	0	0	0	0
	1	0	1	0	0	1	0	1
	0	0	0	0	1	0	0	0
	1	0	1	0	0	0	0	1
	0	0	1	0	0	0	0	1
	0	0	1	0	0	0	0	0
	0	1	0	1	0	0	0	0
	0	0	0	0	0	0	1	.25
Transition	.33	0	0	.50	0	0	0	0
Probability	.33	0	.25	0	0	1	0	.25
	0	0	0	0	1	0	0	0
	.33	0	.25	0	0	0	0	.25
	0	0	.25	0	0	0	0	.25
	0	0	.25	0	0	0	0	0
	0	1	0	.50	0	0	0	0
May 1, 2008			Lecture 28					36

Stationary vector represents how "popular" the pages are \rightarrow PageRank						
0.5723		0.8911	6		4	
0.8206		0.8206	2		2	
0.7876		0.7876	3		3	
0.2609		0.5723	1		6	
0.2064		0.4100	8		8	
0.8911		0.2609	4		1	
0.2429		0.2429	7		7	
0.4100		0.2064	5		5	
statVec	statVec sorted		idx	:	pR	
May 1, 2008		Lecture 28			37	

<pre>[sorted, idx] = sort(-statVec); for k= 1:length(statVec) j = idx(k) % index of kth largest pR(j) = k; end</pre>						
0.5723		0.8911	6		4	
0.8206		0.8206	2		2	
0.7876		0.7876	3		3	
0.2609		0.5723	1		6	
0.2064		0.4100	8		8	
0.8911		0.2609	4		1	
0.2429		0.2429	7		7	
0.4100		0.2064	5		5	
statVec so		sorted	idx		pR	
May 1, 2008		Lecture 28			38	

Optimization

May 1, 2008

- Find the "best" of something
 - the shortest path
 - the most cost efficient production line
 - the lowest-risk investment strategy
- There is a search (solution) space
- There is some kind of objective function
- There are usually constraints
- Usually willing to accept suboptimal solution if it is "good enough" and is cheap to compute

- Develop/implement algorithms for problems
- Develop programming skills
 - Design, implement, document, test, and debug
- Programming "tool bag"
 - Control flow (if-else; loops)
 - Functions for reducing redundancy
 - Data structures
 - Graphics
 - File handling

Final Exam

May 1, 2008

- Thurs 5/8, 9-11:30am, Barton East and Central.
- Covers entire course, but emphasizes material after Prelim 3
- Closed-book exam, no calculators
- Bring student ID card
- Check for announcements on webpage:
 - Study break office/consulting hours
 - Review session time and location
 - Review questions

May 1, 2008

List of potentially useful functions