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Previous Lecture:
Models and data

Congressional apportionment
Sensitivity analysis

Today’s Lecture:
Simulation—Google “page rank”
Optimization—the traveling salesperson problem
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Background

Index all the pages on the Web from 1 to n.  (n is 
around ten billion.)

The PageRank algorithm orders these pages from 
“most important” to “least important”.

It does this by analyzing links, not content.
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A 3-node network with specified transition probabilities 
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Transition 
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A special random walk

Suppose there are a 1000 people on each node.

At the sound of a whistle they hop to another 
node in accordance with the “outbound”
probabilities.
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State Vector

Time 0    [1000 1000 1000]

Time 1 [1000 1300  700]

Time 2 [1120 1300  580]

The state of each node at a specific time
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After 100 Iterations

Before         After

Node 1    1142.85      1142.85

Node 2    1357.14      1357.14

Node 3     500.00       500.00

Appears to reach a steady state

Call this the stationary vector
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Formula for the new state vector

W(1) = P(1,1)*v(1) + P(1,2)*v(2) + P(1,3)*v(3)
W(2) = P(2,1)*v(1) + P(2,2)*v(2) + P(2,3)*v(3)
W(3) = P(3,1)*v(1) + P(3,2)*v(2) + P(3,3)*v(3)
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v is the old state vector
w is the updated state vector
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The general case

function w = Update(P,v)
% Update state vector v based on transition
% probability matrix P to give state vector w
n = length(v); 
w = zeros(n,1);
for i=1:n

for j=1:n
w(i) = w(i) + P(i,j)*v(j);

end
end
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To obtain the stationary vector…

function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol

v = w;
w = Update(P,v);
err = max(abs(w-v));
k = k+1;

end
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A random walk on the Web

Repeat:
You are on a webpage.
There are m outlinks.
Choose one at random.
Click on the link.

What if there are no outlinks?
We’ll deal with dead ends later.
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0 1 0 0 1 0 1 0
1 0 0 0 0 0 1 1
0 1 0 0 1 0 0 0
1 0 1 1 0 1 0 0
0 0 0 1 0 0 1 0
0 1 1 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0

A Connectivity Matrix

G

G(i,j) is1if 
there is a link 
on page j to 
page i.
(I.e., you can 
get to i from
j.)
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Connectivity (G) Transition Probability (P)

[n,n] = size(G);
P = zeros(n,n);
for j=1:n

P(:,j) = G(:,j)/sum(G(:,j));
end
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0   0   0   0   0   0   1   1
1   0   0   1   0   0   0   0
1   0   1   0   0   1   0   1
0   0   0   0   1   0   0   0
1   0   1   0   0   0   0   1
0   0   1   0   0   0   0   1
0   0   1   0   0   0   0   0
0   1   0   1   0   0   0   0

Connectivity

0   0   0   0   0   0   1  .25
.33  0   0  .50  0   0   0   0
.33  0  .25  0   0   1   0  .25
0   0   0   0   1   0   0   0

.33  0  .25  0   0   0   0  .25
0   0  .25  0   0   0   0  .25
0   0  .25  0   0   0   0   0
0   1   0  .50  0   0   0   0

Transition 
Probability
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Stationary vector represents how “popular” the pages are 
PageRank
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sorted pRstatVec idx

[sorted, idx] = sort(-statVec);
for k= 1:length(statVec)

j = idx(k) % index of kth largest
pR(j) = k;

end
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A new random walk on the Web that deals with dead ends

Repeat:
You are on a webpage.
If there are no outlinks

Pick a random page and  go there.
else

Flip an unfair coin.
if heads

Click on a random outlink and go there.
else

Pick a random page and go there.
end

end                                                   

In practice, an unfair coin 

with prob .85 heads works 

well.

This results in a different 
transitional probability matrix.
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0   0   0   0   0   0 1   1
1   0   0   1   0   0 0   0
1   0   1   0   0   0 0   1
0   0   0   0   1   0 0   0
1   0   1   0   0   0 0   1
0   0   1   0   0   0 0   1
0   0   1   0   0   0 0   0
0   1   0   1   0   0 0   0

Connectivity

Page 6 has no 
outlinks.

0   0   0   0   0   ? 1  .25
.33  0   0  .50  0   ? 0   0
.33  0  .25  0   0   ? 0  .25
0   0   0   0   1   ? 0   0

.33  0  .25  0   0   ? 0  .25
0   0  .25  0   0   ? 0  .25
0   0  .25  0   0   ? 0   0
0   1   0  .50  0   ? 0   0

Transition Probability

A.  0

B.  0.125

C.  1

D.  rand

Other columns need to
be changed as well.  See 

PageRank.m
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Optimization

Find the “best” of something
the shortest path
the most cost efficient production line
the lowest-risk investment strategy

There is a search (solution) space
There is some kind of objective function
There are usually constraints
Usually willing to accept suboptimal solution if it 
is “good enough” and is cheap to compute
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The Traveling Salesperson Problem (TSP)

A salesperson must travel to a set of cities exactly 
once and then return to the starting city.  What is 
the shortest path?
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A heuristic is a computational rule-of-thumb that 
points us towards optimality but without any 
guarantee that optimality will actually be achieved.

A heuristic for the TSP:

From the current location, choose to 
visit the nearest unvisited city
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Organization of the TSP program

% Visit n cities, starting from city 1
Put cities 2:n in unvisited list
for k= 2:n

Find nearest unvisited city, c
Put city c in the tour path
Remove city c from unvisited list

end
Return to city 1
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What we learned…

Develop/implement algorithms for problems
Develop programming skills

Design, implement, document, test, and debug

Programming “tool bag”
Control flow (if-else; loops)
Functions for reducing redundancy
Data structures
Graphics
File handling
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What we learned… (cont’d)

Applications and concepts
Image and sound
Sorting and searching
Divide-and-conquer strategies
Approximation and error
Simulation and optimization
Computational effort and efficiency
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Final Exam

Thurs 5/8, 9-11:30am, Barton East and Central.
Covers entire course, but emphasizes material after 
Prelim 3
Closed-book exam, no calculators
Bring student ID card

Check for announcements on webpage:
Study break office/consulting hours
Review session time and location
Review questions
List of potentially useful functions


