
CS100M Lecture 28 2008/5/1

Lecture slides 1

Previous Lecture:
Models and data

Congressional apportionment
Sensitivity analysis

Today’s Lecture:
Simulation—Google “page rank”
Optimization—the traveling salesperson problem

May 1, 2008 Lecture 28 14

Background

Index all the pages on the Web from 1 to n. (n is
around ten billion.)

The PageRank algorithm orders these pages from
“most important” to “least important”.

It does this by analyzing links, not content.

May 1, 2008 Lecture 28 16

A 3-node network with specified transition probabilities

1

2

3

.1

.2

.3

.3

.1
.5

.7

.6

.2

A node
Transition
probabilities

May 1, 2008 Lecture 28 17

A special random walk

Suppose there are a 1000 people on each node.

At the sound of a whistle they hop to another
node in accordance with the “outbound”
probabilities.

May 1, 2008 Lecture 28 24

State Vector

Time 0 [1000 1000 1000]

Time 1 [1000 1300 700]

Time 2 [1120 1300 580]

The state of each node at a specific time

May 1, 2008 Lecture 28 25

After 100 Iterations

Before After

Node 1 1142.85 1142.85

Node 2 1357.14 1357.14

Node 3 500.00 500.00

Appears to reach a steady state

Call this the stationary vector

CS100M Lecture 28 2008/5/1

Lecture slides 2

May 1, 2008 Lecture 28 28

Formula for the new state vector

W(1) = P(1,1)*v(1) + P(1,2)*v(2) + P(1,3)*v(3)
W(2) = P(2,1)*v(1) + P(2,2)*v(2) + P(2,3)*v(3)
W(3) = P(3,1)*v(1) + P(3,2)*v(2) + P(3,3)*v(3)

P
.7
.2

.3

.6

.1 .5
.3
.2

.1

v is the old state vector
w is the updated state vector

May 1, 2008 Lecture 28 29

The general case

function w = Update(P,v)
% Update state vector v based on transition
% probability matrix P to give state vector w
n = length(v);
w = zeros(n,1);
for i=1:n

for j=1:n
w(i) = w(i) + P(i,j)*v(j);

end
end

May 1, 2008 Lecture 28 30

To obtain the stationary vector…

function [w,err]= StatVec(P,v,tol,kMax)
% Iterate to get stationary vector w
w = Update(P,v);
err = max(abs(w-v));
k = 1;
while k<kMax && err>tol

v = w;
w = Update(P,v);
err = max(abs(w-v));
k = k+1;

end
May 1, 2008 Lecture 28 31

A random walk on the Web

Repeat:
You are on a webpage.
There are m outlinks.
Choose one at random.
Click on the link.

What if there are no outlinks?
We’ll deal with dead ends later.

May 1, 2008 Lecture 28 33

0 1 0 0 1 0 1 0
1 0 0 0 0 0 1 1
0 1 0 0 1 0 0 0
1 0 1 1 0 1 0 0
0 0 0 1 0 0 1 0
0 1 1 0 0 1 0 0
1 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0

A Connectivity Matrix

G

G(i,j) is1if
there is a link
on page j to
page i.
(I.e., you can
get to i from
j.)

May 1, 2008 Lecture 28 35

Connectivity (G) Transition Probability (P)

[n,n] = size(G);
P = zeros(n,n);
for j=1:n

P(:,j) = G(:,j)/sum(G(:,j));
end

CS100M Lecture 28 2008/5/1

Lecture slides 3

May 1, 2008 Lecture 28 36

0 0 0 0 0 0 1 1
1 0 0 1 0 0 0 0
1 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

Connectivity

0 0 0 0 0 0 1 .25
.33 0 0 .50 0 0 0 0
.33 0 .25 0 0 1 0 .25
0 0 0 0 1 0 0 0

.33 0 .25 0 0 0 0 .25
0 0 .25 0 0 0 0 .25
0 0 .25 0 0 0 0 0
0 1 0 .50 0 0 0 0

Transition
Probability

May 1, 2008 Lecture 28 37

Stationary vector represents how “popular” the pages are
PageRank

0.5723
0.8206
0.7876
0.2609
0.2064
0.8911
0.2429
0.4100

0.8911
0.8206
0.7876
0.5723
0.4100
0.2609
0.2429
0.2064

6
2
3
1
8
4
7
5

4
2
3
6
8
1
7
5

sorted pRstatVec idx

May 1, 2008 Lecture 28 38

0.5723
0.8206
0.7876
0.2609
0.2064
0.8911
0.2429
0.4100

0.8911
0.8206
0.7876
0.5723
0.4100
0.2609
0.2429
0.2064

6
2
3
1
8
4
7
5

4
2
3
6
8
1
7
5

sorted pRstatVec idx

[sorted, idx] = sort(-statVec);
for k= 1:length(statVec)

j = idx(k) % index of kth largest
pR(j) = k;

end

May 1, 2008 Lecture 28 39

A new random walk on the Web that deals with dead ends

Repeat:
You are on a webpage.
If there are no outlinks

Pick a random page and go there.
else

Flip an unfair coin.
if heads

Click on a random outlink and go there.
else

Pick a random page and go there.
end

end

In practice, an unfair coin

with prob .85 heads works

well.

This results in a different
transitional probability matrix.

May 1, 2008 Lecture 28 40

0 0 0 0 0 0 1 1
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0

Connectivity

Page 6 has no
outlinks.

0 0 0 0 0 ? 1 .25
.33 0 0 .50 0 ? 0 0
.33 0 .25 0 0 ? 0 .25
0 0 0 0 1 ? 0 0

.33 0 .25 0 0 ? 0 .25
0 0 .25 0 0 ? 0 .25
0 0 .25 0 0 ? 0 0
0 1 0 .50 0 ? 0 0

Transition Probability

A. 0

B. 0.125

C. 1

D. rand

Other columns need to
be changed as well. See

PageRank.m

May 1, 2008 Lecture 28 44

Optimization

Find the “best” of something
the shortest path
the most cost efficient production line
the lowest-risk investment strategy

There is a search (solution) space
There is some kind of objective function
There are usually constraints
Usually willing to accept suboptimal solution if it
is “good enough” and is cheap to compute

CS100M Lecture 28 2008/5/1

Lecture slides 4

May 1, 2008 Lecture 28 45

The Traveling Salesperson Problem (TSP)

A salesperson must travel to a set of cities exactly
once and then return to the starting city. What is
the shortest path?

May 1, 2008 Lecture 28 48

A heuristic is a computational rule-of-thumb that
points us towards optimality but without any
guarantee that optimality will actually be achieved.

A heuristic for the TSP:

From the current location, choose to
visit the nearest unvisited city

May 1, 2008 Lecture 28 49

Organization of the TSP program

% Visit n cities, starting from city 1
Put cities 2:n in unvisited list
for k= 2:n

Find nearest unvisited city, c
Put city c in the tour path
Remove city c from unvisited list

end
Return to city 1

May 1, 2008 Lecture 28 50

What we learned…

Develop/implement algorithms for problems
Develop programming skills

Design, implement, document, test, and debug

Programming “tool bag”
Control flow (if-else; loops)
Functions for reducing redundancy
Data structures
Graphics
File handling

May 1, 2008 Lecture 28 51

What we learned… (cont’d)

Applications and concepts
Image and sound
Sorting and searching
Divide-and-conquer strategies
Approximation and error
Simulation and optimization
Computational effort and efficiency

May 1, 2008 Lecture 28 53

Final Exam

Thurs 5/8, 9-11:30am, Barton East and Central.
Covers entire course, but emphasizes material after
Prelim 3
Closed-book exam, no calculators
Bring student ID card

Check for announcements on webpage:
Study break office/consulting hours
Review session time and location
Review questions
List of potentially useful functions

