- Previous Lecture:
- Insertion sort vs. merge sort
- Timing with tic toc
- Time efficiency vs. memory efficiency
- Today's Lecture:
- Models and data
- Congressional apportionment
- Sensitivity analysis
- Announcements
- Section in computer lab
- Project 6 due 5/I, 6pm.
- Survey on "clicker" use-see announcement on the web
- CSIOOM final will be $5 / 8$ (Thurs) 9am. Tell us now if you have a final exam conflict. Email Kelly Patwell with your complete exam schedule (course \#s and times)

The ratio of population to delegation size as a measurement of fairness

Distribute 435 Congressional seats among the 50 states so that the ratio of population to delegation size is roughly the same from state to state.

Sounds specific, but even with this "definition" of fairness there're different models that can be used as demonstrated throughout history... and in this lecture.

Apil 29,2008 Lecture 27 3

Proportional representation in the spirit of "one person, one vote"

Article I Section 2 of the US Constitution:
Representatives... shall be apportioned among the several States, which may be included within this Union, according to their respective numbers..."

How do you quantify fairness?
There are different models of fairness.
(Were some models advanced for political reasons?)

April 29,2008
Leeture 27

Related questions

How "close" is a state to losing a Congressional district because of population changes?

If Puerto Rico and/or Washington DC become states and the number of Congressional seats remain the same, which states would lose a seat?

- Reasoning about change is very important!
-How does the "answer" change if the data change or if the assumptions that underlie the computation change?
\rightarrow Sensitivity analysis
April 29,2008
Leeture 27

Sensitivity analysis	
How far would the "center" of US population move if one more person moves to NYI4850?	
Order of...	
A. kilometers	
B. meters	
C. millimeters	
D. Micrometers \rightarrow no change	
Apil2, 2008	8

The apportionment problem

Distribute 435 Congressional seats among the 50 states so that the ratio of population to delegation size is roughly the same from state to state.

Subtext:

These examples provide distinct opportunities to review 100M programming techniques.

Apil 29, 2008
Lecture 27

Ideal: Equal Representation	
Number of states:	\mathbf{n}
State populations:	$\mathbf{p}(\mathbf{1}), \ldots, p(n)$
Total Population:	\mathbf{p}
State delegation size:	$\mathbf{d}(\mathbf{1}), \ldots, d(n)$
Number of seats:	\mathbf{D}

i.e.,

$$
d(i)=\frac{p(i)}{P} D
$$

But delegation size must
be a whole numberl!
And so for NY in 2000..

$$
\frac{P}{D}=\frac{p(1)}{d(1)}=\ldots=\frac{p(n)}{d(n)}
$$

Realistic situation	
$\frac{P}{D} \approx \frac{p(1)}{d(1)}$	$\approx \frac{p(n)}{d(n)}$
Number of states:	n
State populations:	$p(1), \ldots, p(n)$
Total Population:	P
State delegation size:	$d(1), \ldots, d(n)$
Number of seats:	D

Definition

An Apportionment Method determines delegation sizes $\mathrm{d}(\mathrm{I}), \ldots, \mathrm{d}(\mathrm{n})$ that are whole numbers so that representation is approximately equal:

$$
\frac{p(1)}{d(1)} \approx \ldots \approx \frac{p(n)}{d(n)}
$$

Jefferson Method 1790-1830
Decide on a "common ratio," the ideal number of constituents per district.

In 1790: $\quad r=33000$
Delegation size for the i-th state is

$$
d(i)=\text { floor (p(i)/r) }
$$

April 29, 2008

State	Pop	Reps	Pop/Reps
Connecticut	236841	7	33834
Delaware	55540	1	55540
Georgia	70835	2	35417
Kentucky	68705	2	34352
Maryland	278514	8	34814
Massachusetts	475327	14	33951
New Hampshire	141822	4	35455
New Jersey	179570	5	35914
New York	331589	10	33158
North Carolina	353523	10	35352
Pennsylvania	432879	13	33298
Rhode Island	68446	2	34223
South Carolina	206236	6	34372
Vermont	85533	2	42766
Virginia	630560	19	33187

Hamilton Method (I850-1900)
This method fixes the size of Congress.
Allocations are based on the "ideal ratio":
Total Population / Total Number of Seats

$\mathrm{p}(\mathrm{i}) / \mathrm{r}$ where \mathbf{r} is the ideal ratio					
AL	6.798	KY	9.622	NC	8.074
AR	2.047	LA	4.498	OH	21.218
CA	1.768	ME	6.248	PA	24.769
CT	3.973	MD	5.859	RI	1.581
DE	0.971	MA	10.655	SC	5.513
FL	0.768	MI	4.261	TN	9.717
GA	8.073	MS	5.171	TX	2.028
IL	9.123	MO	6.933	VT	3.366
IN	10.590	NH	3.407	VI	13.207
IA	2.059	NJ	5.244	WI	3.272
		NY	33.186		
	Apail 29.208		Lecture 27		${ }^{21}$

floor(p(i)/r)					
AL	6.798	KY	9.622	NC	8.074
AR	2.047	LA	4.498	OH	21.218
CA	1.768	ME	6.248	PA	24.769
CT	3.973	MD	5.859	RI	1.581
DE	0.971	MA	10.655	SC	5.513
FL	0.768	MI	4.261	TN	9.717
GA	8.073	MS	5.171	TX	2.028
IL	9.123	MO	6.933	VT	3.366
IN	10.590	NH	3.407	VI	13.207
IA	2.059	NJ	5.244	WI	3.272
		NY	33.186		
Appil 20.2008		Leture 27		22	

These 14 states most deserve an extra seat

AL	6.798	KY	9.622	NC	8.074
AR	2.047	LA	4.498	OH	21.218
CA	1.768	ME	6.248	PA	24.769
CT	3.973	MD	5.859	RI	1.581
DE	0.971	MA	10.655	SC	5.513
FL	0.768	MI	4.261	TN	9.717
GA	8.073	MS	5.171	TX	2.028
IL	9.123	MO	6.933	VT	3.366
IN	10.590	NH	3.407	VI	13.207
IA	2.059	NJ	5.244	WI	3.272
NY					
33.186					
AL would lose I seat if Congress increases by I seat (I880 census)					

Method of Equal Proportions
This method has been in use since 1940 .
For the 2000 apportionment:

$$
\begin{aligned}
& \mathrm{n}=50 \\
& \mathrm{D}=435
\end{aligned}
$$

Determine the delegation sizes $\mathrm{d}(1: 50)$
Given the state populations $\mathrm{p}(1: 50)$

How to quantify "most deserving"?
The Method of Small Divisors

At this point in the "card game" deal a district to the state having the largest quotient
p(i)/d(i)

Tends to favor small states.

Apil 29.2008
Lecture 27

How to quantify "most deserving"?

The Method of Major Fractions

At this point in the "card game" deal a district to the state having the largest value of
($p(i) / d(i)+p(i) /(d(i)+1) / 2$

Compromise via the arithmetic mean

Apoil 29,2008
Lecture 27

How to quantify "most deserving"?

The Method of Large Divisors

At this point in the "card game" deal a district to the state having the largest quotient

$$
p(i) /(d(i)+1)
$$

Tends to favor large states

Apil 29, 2008
Lecture 27

How to quantify "most deserving"?

The Method of Equal Proportions

At this point in the "card game" deal a district to the state having the largest value of

```
sqrt( p(i)/d(i) * p(i)/(d(i)+1) )
```


Compromise via the geometric mean

April 29, 2008
Lecture 27

```
Allocate using the method of equal proportions
% Every state gets a district
d= ones(50,1);
% "Deal out" remaining districts
for k= 51:435
    [z,i]= max((p./d).*(p./(d+1)))
    d(i)= d(i) + 1;
end

A Sensitivity Analysis
- The \(435^{\text {th }}\) district was awarded to North Carolina.
- Was that a "close call"? Was there another state that "almost" won this last district? Quantify the close call.
- Look at the "most deserving" ranks for the last district handed out. Which state was second? (Utah) Was this \(2^{\text {nd }}\) highest rank "close" to the max?
- How many people will need to move from NC to UT in order for the last district to go to UT (instead of NC )?
April 29,2008
Lecture 27

\section*{Move from NC to UT}

NC: 64593I
Equal Proportion ranking when dealing out the last district

North Carolina just beat out Utah for the last congressional seat based on 2000 census.

Can show that if 670 people move from NC to UT, then NC loses a seat and UT gains one.

Apil 29, 2008

Other questions
If Puerto Rico and/or Washington DC become states and the total number of representatives remains at 435 , then what states lose a congressional seat?

If the population of New York remains fixed and all other states grow by \(5 \%\) during the2000-10 decade, then how many seats will NY lose?

Apil 29, 2008
Lecture 27
```

