Previous Lecture:

- Insertion sort vs. merge sort
- Timing with tic toc
 Time efficiency vs. memory efficiency
- ,

Today's Lecture:

- Models and data
 - Congressional apportionmentSensitivity analysis

Announcements

April 29, 2008

- Section in computer lab
- Project 6 due 5/1, 6pm.
- Survey on "clicker" use—see announcement on the web
- CS100M final will be 5/8 (Thurs) 9am. Tell us now if you have a final exam conflict. Email Kelly Patwell with your complete exam schedule (course #s and times)

Proportional representation in the spirit of "one person, one vote"

Article I Section 2 of the US Constitution:

Representatives... shall be apportioned among the several States, which may be included within this Union, according to their respective numbers..."

> How do you quantify fairness? There are different models of fairness. (Were some models advanced for political reasons?)

> > Lecture 27

April 29, 2008

The ratio of population to delegation size as a measurement of fairness

Distribute 435 Congressional seats among the 50 states so that the ratio of population to delegation size is roughly the same from state to state.

Sounds specific, but even with this "definition" of fairness there're different models that can be used as demonstrated throughout history... and in this lecture.

Lecture 27

Sensitivity analysis	The apportionment problem
How far would the "center" of US population move if one more person moves to NY14850?	Distribute 435 Congressional seats among the 50 states so that the ratio of population to delegation size is roughly the same from state to
Order of	state.
B. meters	Subtext:
C. millimeters	These examples provide distinct opportunities to review 100M programming techniques.
U. Micrometers - no change	
April 29, 2008 Lecture 27 8	April 29, 2008 Lecture 27 9

Definition

April 29, 2008

An <u>Apportionment Method</u> determines delegation sizes d(1),...,d(n) that are whole numbers so that representation is approximately equal:

$$\frac{p(1)}{d(1)} \approx \dots \approx \frac{p(n)}{d(n)}$$

State	Pop	Reps	Pop/Reps
Connecticut	236841	7	33834
Delaware	55540	1	55540
Georgia	70835	2	35417
Kentucky	68705	2	34352
Maryland	278514	8	34814
Massachusetts	475327	14	33951
New Hampshire	141822	4	35455
New Jersey	179570	5	35914
New York	331589	10	33158
North Carolina	353523	10	35352
Pennsylvania	432879	13	33298
Rhode Island	68446	2	34223
South Carolina	206236	6	34372
Vermont	85533	2	42766
Virginia	630560	19	33187
April 29, 2008	Lecture 27		16

Jefferson Method 1790-1830						
Population and the chosen common ratio determine the size of Congress:						
Year	Р	r	D			
1790	3615920	33000	105			
1800	4889823	33000	141			
1810	6584255	35000	181			
1820	8969878	40000	213			
1830	11931000	47700	240			
April 29, 2008	Le	cture 27		17		

p(i)/r where r is the ideal ratio						
AL	6.798	КY	9.622	NC	8.074	
AR	2.047	LA	4.498	ОН	21.218	
CA	1.768	ME	6.248	PA	24.769	
СТ	3.973	MD	5.859	RI	1.581	
DE	0.971	MA	10.655	sc	5.513	
FL	0.768	MI	4.261	TN	9.717	
GA	8.073	MS	5.171	тх	2.028	
IL	9.123	MO	6.933	VT	3.366	
IN	10.590	NH	3.407	VI	13.207	
IA	2.059	NJ	5.244	WI	3.272	
		NY	33.186			
	April 29, 2008		Lecture 27		21	

	<pre>floor(p(i)/r)</pre>					
AL AR	6.798 2.047	KY LA	9.622 4.498	NC OH	8.074 21.218	
CA CT	1.768 3.973	ME MD	6.248 5.859	PA RI	24.769 1.581	
FL GA	0.768	MA MI MS	4.261 5.171	SC TN TX	9.717 2.028	
IL IN	9.123 10.590	MO NH	6.933 3.407	VT VI	3.366 13.207	
IA	2.059	NJ NY	5.244 33.186	WI	3.272	
	April 29, 2008		Lecture 27		22	

These 14 states most deserve an extra seat						
AL	6.798	KY	9.622	NC	8.074	
AR	2.047	LA	4.498	он	<mark>21.</mark> 218	
CA	1.768	ME	6.248	PA	24.769	
CT	3.973	MD	5.859	RI	1.581	
DE	0.971	MA	10.655	sc	5.513	
FL	0.768	MI	4.261	TN	9.717	
GA	8.073	MS	5.171	тх	2.028	
IL	9.123	MO	6.933	VT	3.366	
IN	10.590	NH	3.407	VI	13.207	
IA	2.059	NJ	5.244	WI	3.272	
		NY	33.186			
Alabama paradox: AL would lose I seat if Congress increases by I seat (1880 census)						

% Every state gets a district
d= ones(50,1);
% "Deal out" remaining districts
% by ranking the states and each time giving a
% district to the "most deserving state"

How to quantify "most deserving"? How to quantify "most deserving"? The Method of Small Divisors At this point in the "card game" deal a district to the state having the largest quotient p(i)/d(i)Tends to favor small states. April 29, 2008 Lecture 27 April 29, 2008

The Method of Large Divisors At this point in the "card game" deal a district to the state having the largest quotient

p(i)/(d(i) + 1)

Tends to favor large states

Lecture 27

How to quantify "most deserving"?

April 29, 2008

The Method of Major Fractions

At this point in the "card game" deal a district to the state having the largest value of

(p(i)/d(i) + p(i)/(d(i)+1))/2

Compromise via the arithmetic mean

Lecture 27

How to quantify "most deserving"? The Method of Equal Proportions At this point in the "card game" deal a district to the state having the largest value of sqrt(p(i)/d(i) * p(i)/(d(i)+1)) Compromise via the geometric mean April 29, 2008 Lecture 27

Move from NC to U	Othe		
NC: 645931 UT: 645684	Equal Proportion ranking when dealing out the last district		lf Pue sta
North Carolina jus congressional seat	t beat out Utah for the based on 2000 census.	last	cor
Can show that if 67 to UT, then NC los one.	If the all deo		
April 29, 2008	Lecture 27	35	Apr

A useful structure array C = CensusData assigns to the structure array C the apportionments and census results for the census years 1890 through 2000. C(k) houses information pertaining to the k-th census/apportionment.


```
Example

C = CensusData;

Pop = C(10).pop;

Reps = C(10).reps;

P = 0; D = 0;

for i=1:length(pop)

P = P + Pop(i);

D = D + Reps(i);

end

r = P/D; % r is the ideal ratio based

% on the 10th census
```

