- Previous Lecture:
- Insertion sort vs. merge sort
- Timing with tic toc
- Time efficiency vs. memory efficiency
- Today's Lecture:
- Models and data
- Congressional apportionment
- Sensitivity analysis
- Announcements
- Section in computer lab
- Project 6 due 5/I, 6pm.
- Survey on "clicker" use-see announcement on the web
- CSIOOM final will be $5 / 8$ (Thurs) 9am. Tell us now if you have a final exam conflict. Email Kelly Patwell with your complete exam schedule (course \#s and times)

The ratio of population to delegation size as a measurement of fairness

Distribute 435 Congressional seats among the 50 states so that the ratio of population to delegation size is roughly the same from state to state.

Sounds specific, but even with this "definition" of
fairness there're different models that can be used as demonstrated throughout history... and in this lecture.

April 29,2008

Lecture 27

What are the "errors" in calculating the surface area of the Earth?
myPi= 3.14;
$r=3961.11345$;
earthArea= 4*myPi*r*r;
A. Math error in myPi
B. Measurement error in r
C. Rounding error in arithmetic
D. All of the above
\rightarrow Sensitivity analysis
Apil 29,2008
ecture 27
pori 29, 2008
Leture 27

Sensitivity analysis
How far would the "center" of US population move if one more person moves to NYI4850?

Order of..

A. kilometers
B. meters
C. millimeters
D. Micrometers \rightarrow no change

April 29,2000
Lecture 27

Definition

An Apportionment Method determines delegation sizes $d(I), \ldots, d(n)$ that are whole numbers so that representation is approximately equal:

$$
\frac{p(1)}{d(1)} \approx \ldots \approx \frac{p(n)}{d(n)}
$$

The Method of Equal Proportions

At this point in the "card game" deal a district to the state having the largest value of
sqrt(p(i)/d(i) * p(i)/(d(i)+1))

Compromise via the geometric mean

Apil 29,2008
Lecture 27

A Sensitivity Analysis

- The $435^{\text {th }}$ district was awarded to North Carolina.
- Was that a "close call"? Was there another state that "almost" won this last district? Quantify the close call.

```
Allocate using the method of equal proportions
% Every state gets a district
d= ones(50,1);
% "Deal out" remaining districts
for k= 51:435
    [z,i]= max((p./d).*(p./(d+1)))
    d(i)= d(i) + 1;
end
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Allocate using the method of eq \\
\% Every state gets a district \\
\(\mathrm{d}=\) ones \((50,1) ;\) \\
\% "Deal out" remaining districts \\
for \(k=51: 435\)
\end{tabular}}} \\
\hline & & \\
\hline \multicolumn{3}{|r|}{\([z, i]=\max ((p . / d) . *(p . /(d+1)))\)} \\
\hline \multicolumn{3}{|l|}{\[
\text { end } d(i)=d(i)+1 ;
\]} \\
\hline \multicolumn{3}{|l|}{See posted version for detail} \\
\hline
\end{tabular}
```

Example
C = CensusData;
Pop = C(10).pop;
Reps = C(10).reps;
P = 0; D = 0;
for i=1:length(pop)
P = P + Pop(i);
D = D + Reps(i);
end
r = P/D; % r is the ideal ratio based
% on the 10th census
Appri 29,2008

```
% Every state gets a district
d= ones(50,1);
% "Deal out" remaining districts
for k= 51:435
```

 \% Let i be the index of the state that
 \% most deserves an additional district
 \(d(i)=d(i)+1 ;\)
 end
April 29, 2008
Lecture 27

