
CS100M Lecture 26 2008/4/24

Lecture slides 1

Previous Lecture:
“Divide and conquer” strategies—recursion

Merge sort
Sierpinski Triangle, revisited

Today’s Lecture:
Insertion sort vs. merge sort
Timing with tic toc
Time efficiency vs. memory efficiency

Announcements
Project 6 has been posted. Due 5/1, 6pm.
CS100M final will be 5/8 (Thurs) 9am. Tell us now if you
have a final exam conflict. Email Kelly Patwell with your
complete exam schedule (course #s and times)

April 24, 2008 Lecture 26 2

Merge Sort

April 24, 2008 Lecture 26 3

Merge Sort

April 24, 2008 Lecture 26 4

Merge Sort

April 24, 2008 Lecture 26 5

Merge Sort

April 24, 2008 Lecture 26 6

Merge Sort

CS100M Lecture 26 2008/4/24

Lecture slides 2

April 24, 2008 Lecture 26 7

Merge Sort

April 24, 2008 Lecture 26 8

Merge Sort

April 24, 2008 Lecture 26 9

Merge Sort

April 24, 2008 Lecture 26 10

Merge Sort

April 24, 2008 Lecture 26 12

Insertion Sort

Given a sorted array x, insert a number y such
that the result is sorted

2 3 6 98

2 3 6 9 8

April 24, 2008 Lecture 26 13

2 3 6 9 8

2 3 6 98

CS100M Lecture 26 2008/4/24

Lecture slides 3

April 24, 2008 Lecture 26 14

2 3 6 98

2 3 6 9 8

2 3 6 98

April 24, 2008 Lecture 26 15

42 3 6 98

2 3 6 9 8

2 3 6 98

April 24, 2008 Lecture 26 16

4

2 3 6 98 4

2 3 6 98

2 3 6 9 8

2 3 6 98

April 24, 2008 Lecture 26 17

4

2 3 6 98 4

2 3 6 984

2 3 6 98

2 3 6 9 8

2 3 6 98

April 24, 2008 Lecture 26 18

4

2 3 6 98 4

2 3 6 984

2 3 6 984

2 3 6 98

2 3 6 9 8

2 3 6 98

April 24, 2008 Lecture 26 19

4

2 3 6 98 4

2 3 6 984

2 3 6 984

2 3 4 986

2 3 6 98

2 3 6 9 8

2 3 6 98

CS100M Lecture 26 2008/4/24

Lecture slides 4

April 24, 2008 Lecture 26 20

Develop the insertion sort algorithm

The sorted segment grows one
element at a time—need to keep
track of the length of the sorted
segment, say, index i

What is the simpliest (shortest)
case? A list of length 1, so start
with i=1

Inserting the (i+1)th element
requires a series of swaps: swap
until the element to be inserted
is at the correct place

a while-loop

2 3 6 98 4

2 3 6 98 4

2 3 6 984

2 3 6 984

2 3 4 986

i=5

i=6

April 24, 2008 Lecture 26 21

9 6 3 482i=1: insert x(2) into x(1:1)

April 24, 2008 Lecture 26 22

9 6 3 482i=1: insert x(2) into x(1:1)

6 9 3 482

April 24, 2008 Lecture 26 23

9 6 3 482i=1: insert x(2) into x(1:1)

6 9 3 482i=2: insert x(3) into x(1:2)

April 24, 2008 Lecture 26 24

9 6 3 482i=1: insert x(2) into x(1:1)

6 9 3 482i=2: insert x(3) into x(1:2)

6 93 482

April 24, 2008 Lecture 26 25

9 6 3 482i=1: insert x(2) into x(1:1)

6 9 3 482i=2: insert x(3) into x(1:2)

6 93 482

6 93 482

CS100M Lecture 26 2008/4/24

Lecture slides 5

April 24, 2008 Lecture 26 26

9 6 3 482i=1: insert x(2) into x(1:1)

6 9 3 482i=2: insert x(3) into x(1:2)

6 93 482

6 93 482i=3: insert x(4) into x(1:3)

April 24, 2008 Lecture 26 27

9 6 3 482i=1: insert x(2) into x(1:1)

6 9 3 482i=2: insert x(3) into x(1:2)

6 93 482

6 93 482i=3: insert x(4) into x(1:3)

6 93 482

April 24, 2008 Lecture 26 28

9 6 3 482i=1: insert x(2) into x(1:1)

6 9 3 482i=2: insert x(3) into x(1:2)

6 93 482

6 93 482i=3: insert x(4) into x(1:3)

6 93 482

6 93 482

April 24, 2008 Lecture 26 29

9 6 3 482i=1: insert x(2) into x(1:1)

6 9 3 482i=2: insert x(3) into x(1:2)

6 93 482

6 93 482i=3: insert x(4) into x(1:3)

6 93 482

6 93 482

6 93 482

April 24, 2008 Lecture 26 30

9 6 3 482i=1: insert x(2) into x(1:1)

6 9 3 482i=2: insert x(3) into x(1:2)

6 93 482

6 93 482i=3: insert x(4) into x(1:3)

6 93 482

6 93 482

6 93 482i=4: insert x(5) into x(1:4)

April 24, 2008 Lecture 26 31

function x = insertSort(x)
% Sort vector x in ascending order with insertion sort

n = length(x);
for i= 1:n-1

% Sort x(1:i+1) given that x(1:i) is sorted

end

CS100M Lecture 26 2008/4/24

Lecture slides 6

April 24, 2008 Lecture 26 32

function x = insertSort(x)
% Sort vector x in ascending order with insertion sort

n = length(x);
for i= 1:n-1

% Sort x(1:i+1) given that x(1:i) is sorted
j= i;
need2swap= x(j+1) < x(j);
while need2swap

% swap x(j+1) and x(j)

j= j-1;
need2swap= j>0 && x(j+1)<x(j);

end
end

April 24, 2008 Lecture 26 33

function x = insertSort(x)
% Sort vector x in ascending
order with insertion sort

n = length(x);
for i= 1:n-1

% Sort x(1:i+1) given that
x(1:i) is sorted

j= i;
need2swap= x(j+1) < x(j);
while need2swap

April 24, 2008 Lecture 26 34

How do merge sort and insertion sort compare?

Find out by timing (benchmarking) the two
functions
In Matlab
tic – (re)sets timer
toc – returns the time elapsed since tic

Which method is more efficient?

A. Merge Sort B. Insertion Sort

April 24, 2008 Lecture 26 35

Use tic toc to perform timing operation

x= rand(1000,1);
% Time InsertSort
tic
y= insertSort(x);
t= toc; % #seconds since tic

April 24, 2008 Lecture 26 36

How do merge sort and insertion sort compare?

Merge sort: N logN

Insertion sort: (worst case) takes j operations to
insert an element in a sorted array of j elements.
In total

1+2+…+(N-1) = N(N-1)/2, say N2 for big N

Insertion sort is done in-place; merge sort
requires much more memory

April 24, 2008 Lecture 26 38

How to choose??

Depends on application
Merge sort is especially good for sorting large
data set (but watch out for memory usage)
Insertion sort is “order N2” at worst case, but
what about an average case? If the application
requires that you maintain a sorted array,
insertion sort may be a good choice

CS100M Lecture 26 2008/4/24

Lecture slides 7

April 24, 2008 Lecture 26 39

Why not just use Matlab’s sort function?

Flexibility
E.g., to maintain a sorted list, just write the code for
insertion sort
E.g., sort strings or other complicated structures
Sort according to some criterion set out in a function
file

Observe that we have the comparison x(j+1)<x(j)
The comparison can be a function that returns a boolean value

April 24, 2008 Lecture 26 40

Expensive function evaluations

Consider the execution of a program that is dominated
by multiple calls to an expensive-to-evaluate function
(e.g., climate simulation models)

Can try to improve efficiency by dealing with the
expensive function evaluations

Time spent on evaluating a function Time for other program tasks

Total time

April 24, 2008 Lecture 26 41

Dealing with expensive function evaluations

Can the function code be improved?
Can we do fewer function evaluations?
Can we pre-compute and store specific function values
so that during the main program execution the program
can just look up the values?

Consider function f(x). If there are many function calls and few
distinct values of x, can get substantial speedup
Only speeds up main program execution—it still takes time to
do the pre-computation

f(x)

x

April 24, 2008 Lecture 26 42

What are some issues and potential problems with the
“table look-up” strategy?

Accuracy—need a “dense
grid” to get high accuracy

significant memory
usage
If an exact x-value is not
found, need some kind of
approximation
Incur searching cost if the
x-values are not simple
indices
Feasible in high dimensions
(multiple dependent
variables)?

