CS100M Lecture 26 2008/4/24

m Previous Lecture:

= “Divide and conquer” strategies—recursion
= Merge sort
= Sierpinski Triangle, revisited

= Today’s Lecture:
= Insertion sort vs. merge sort
= Timing with tic toc
= Time efficiency vs. memory efficiency

= Announcements
= Project 6 has been posted. Due 5/1, 6pm.

= CSI00M final will be 5/8 (Thurs) 9am. Tell us now if you
have a final exam conflict. Email Kelly Patwell with your
complete exam schedule (course #s and times)

Insertion Sort

= Given a sorted array X, insert a number y such
that the result is sorted

]

April 24, 2008 Lecture 26 12

Develop the insertion sort algorithm

i=5 <—‘ = The sorted segment grows one
element at a time—need to keep

track of the length of the sorted
segment, say, index i

= What is the simpliest (shortest)
case? A list of length I, so start
with i=|

= Inserting the (i+1)th element
requires a series of swaps: swap
until the element to be inserted
is at the correct place

- a while-loop

April 24, 2008 Lecture 26 20

i=1: insert x(2) into x(1:1)

i=2: insert x(3) into x(1:2)

i=3: insert x(4) into x(1:3)

i=4: insert x(5) into x(1:4)

April 24, 2008 Lecture 26 30

function x = insertSort(x)
% Sort vector X in ascending order with insertion sort

n = length(x);

for i= 1:n-1
% Sort x(1:i+1) given that x(1:i) is sorted

end

April 24, 2008 Lecture 26 £

Use tic toc to perform timing operation

X= rand(1000,1);
% Time InsertSort
tic
y= insertSort(x);
t= toc; % #seconds since tic

April 24, 2008 Lecture 26 35

Lecture slides




CS100M Lecture 26 2008/4/24

How do merge sort and insertion sort compare?
= Merge sort:
= Insertion sort: (worst case) takes j operations to

insert an element in a sorted array of | elements.
In total

for big N

= Insertion sort is done in-place; merge sort
requires much more memory

April 24, 2008 Lecture 26 Ed

How to choose??

= Depends on application

= Merge sort is especially good for sorting large
data set (but watch out for memory usage)

= Insertion sort is “order N?” at worst case, but
what about an average case?! [f the application
requires that you maintain a sorted array,
insertion sort may be a good choice

April 24, 2008 Lecture 26 38

Why not just use Matlab’s sort function?

= Flexibility

= E.g, to maintain a sorted list, just write the code for
insertion sort

= E.g, sort strings or other complicated structures

= Sort according to some criterion set out in a function
file
= Observe that we have the comparison X(J+1)<x(j)

= The comparison can be a function that returns a boolean value

April 24, 2008 Lecture 26 39

Expensive function evaluations

= Consider the execution of a program that is dominated
by multiple calls to an expensive-to-evaluate function
(e.g., climate simulation models)

y . . Time for other program tasks
Time spent on evaluating a function prog

Total time

= Can try to improve efficiency by dealing with the
expensive function evaluations

April 24, 2008 Lecture 26 40

Dealing with expensive function evaluations

= Can the function code be improved?
= Can we do fewer function evaluations?

= Can we pre-compute and store specific function values
so that during the main program execution the program
can just look up the values?
= Consider function f(x). If there are many function calls and few
distinct values of x, can get substantial speedup

= Only speeds up main program execution—it still takes time to
do the pre-computation

f(x)

‘ N S S N S S

Apri 24, 2008 Lecture 26 a1

Lecture slides

What are some issues and potential problems with the
“table look-up” strategy?!

April 24, 2008 Lecture 26 a3




