- Previous Lecture:
- "Divide and conquer" strategies
- Binary search
- Merge sort
- Today's Lecture:
- "Divide and conquer" strategies-recursion - Merge sort
- Sierpinski Triangle, revisited
- Announcements
- Section in classrooms this week
- CSIOOM final will be $5 / 8$ (Thurs) 9am. Tell us now if you have a final exam conflict. Email Kelly Patwell with your complete exam schedule (course \#s and times)

CSIOIJ:

On-line course material; in-person scheduled exams
Two (or three) options:

- Register and work thru in FALL 08. You can take ENGRD/CS 211 in Spring 09.
- Learn the material on your own in Summer 08, then in Fall 08 register + submit assignments + take the tests within the first two weeks. You can take CS2II FA08.
- Possibility: CS offers CSIOIJ in the summer (5/28$6 / 19$). You must be on campus to take the tests during this period.

April 22,2008
Leture 25

An important sub-problem is the merging of two sorted arrays into one single sorted array
$\% x$ is a vector. y is a vector
\% consisting of the values in x
\% sorted from smallest to largest.

```
n = length(x);
```

if $n==1$
$y=x ;$
else
$m=$ floor(n/2);
y1 = mergeSort(x(1:m));
y2 $=\operatorname{mergeSort}(x(m+1: n))$;
$y=\operatorname{merge}(y 1, y 2)$;
end
Apoil 22,2008

Now, climb your way out.


```
function z = merge(x,y)
n = length(x); m = length(y);
z = zeros(1,n+m);
ix = 1; iy = 1;
for iz=1:(n+m)
    if ix > n
        z(iz)=
    elseif iy>m
        z(iz)=
    elseif x(ix) <= y(iy)
        z(iz)=
    else
        z(iz)=
    end
end
```

The basic operation
if the triangle is big enough
Connect the midpoints.
Color the interior triangle mauve.
else
Color the whole triangle yellow.
end
function drawTriangle(x, y, level)
\% Draw recursively colored triangles.
$\% \mathrm{x}, \mathrm{y}$ are 3 -vectors that define the vertices of a triangle.
if level==5
\% Recursion limit (depth) reached fill($\left.x, y, y^{\prime} y^{\prime}\right)$ \% Color whole triangle yellow
else
\% Draw the triangle..
plot([x x(1)],[y y(1)],'k')
\% Draw and color the interior triangle mauve. $a=[(x(1)+x(2)) / 2(x(2)+x(3)) / 2(x(3)+x(1)$ $b=[(y(1)+y(2)) / 2(y(2)+y(3)) / 2(y(3)+y(1)$ pause fill(a,b,'m') pause
\% Apply the process to the three "corner" tria drawTriangle([x(1) a(1) $a(3)],[y(1) b(1) b(3)], l e v e l+1)$ drawTriangle([x(2) a(2) a(1)],[y(2) b(2) b(1)], level+1) drawTriangle([x(3) a(3) $a(2)],[y(3) b(3) b(2)], l e v e l+1)$
end

