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Previous Lecture:
Acoustic data:  frequency computation
Touchtone phone

Today’s Lecture:
“Divide and conquer” strategies

Binary search
Merge sort
Recursion
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Searching for an item in a collection

Is the collection organized?
What is the organizing scheme?
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Not organized?  

May need to look through the whole collection 
to find the target item
E.g., find value x in vector v

Linear search

v

x

% Linear Search
% f is index of first occurrence  
%   of value x in vector v.
% f is -1 if x not found.
k= 1;
while  k<=length(v) && v(k)~=x 

k= k+ 1;
end
if  k>length(v)  

f= -1; % signal for x not found
else

f= k;
end

Suppose another vector is twice as long as v.  The 
expected “effort” required to do a linear search is …

A.  squared

C.  the same

B.  doubled

D.  halved
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An ordered (sorted) list

The Manhattan phone 
book has 1,000,000+ 
entries.

How is it possible to 
locate a name by 
examining just a tiny, 
tiny fraction of those 
entries?
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Key idea:  repeated halving

To find the page containing Pat Reed’s number…

while  (Phone book is longer than 1 page)
Open to the middle page.
if  “Reed” comes before the first entry,

Rip and throw away the 2nd half.
else

Rip and throw away the 1st half.
end

end
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What happens to the phone book length?

Original:     3000 pages
After 1 rip:  1500 pages
After 2 rips:  750 pages
After 3 rips:  375 pages
After 4 rips:  188 pages
After 5 rips:   94 pages

After 12 rips:   1 page
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Binary Search

Repeatedly halving the size of the “search 
space” is the main idea behind the method 
of binary search.

An item in a sorted array of length n can be 
located with just log2 n comparisons.
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12 15 3533 42 45 51 7362 75 86 98

Binary search:  target x = 70

v

L:

Mid:

R:
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v(Mid) <= x

So throw away the
left half…
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12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

6
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1  2  3  4  5  6  7  8  9 10 11 12

x < v(Mid)

So throw away the
right half…

Binary search:  target x = 70
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v(Mid) <= x

So throw away the
left half…

Binary search:  target x = 70
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12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

8

8

9

1  2  3  4  5  6  7  8  9 10 11 12

Done because
R-L = 1

Binary search:  target x = 70
function L = binSearch(x, v)
% Find position after which to insert x. v(1)<…<v(end). 
% L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1).  If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L,R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0;  R=length(v)+1;

% Keep halving [L,R] until R-L is 1,
%   always keeping  v(L) <= x < v(R)
while  R ~= L+1 

m= floor((L+R)/2);  % middle of search window
if  v(m) <= x

L= m;
else

R= m;
end

end
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What happens if the values in the sorted vector are 
not unique?  Say, the target value is in the vector 
and that value appears in the vector multiple 
times…

A.  The first occurrence is identified  

C.  Any one of the occurrences may be identified

B.  The last occurrence is identified

D.  Binary search doesn’t work
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Binary search is efficient, but how do we sort a 
vector in the first place so that we can use binary 
search?

Many different algorithms out there...
Let’s look at  merge sort
An example of the “divide and conquer”
approach

Merge sort:  Motivation

What if those two helpers 
each had two sub-helpers? 

If I have two helpers, I’d…
• Give each helper half the array to 

sort
• Then I get back the sorted 

subarrays and merge them.

And the sub-helpers each had 
two sub-sub-helpers?  And…
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Subdivide the sorting task

J NR CP DF LA QB KM GH E

A QB KM GH E J NR CP DF L
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Subdivide again

A QB KM GH E J NR CP DF L

M GH E A QB K P DF L J NR C
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And again

M GH E A QB K P DF L J NR C

M GH E A QB K P DF L J NR C
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And one last time

J NR CP DF LA QB KM GH E
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Now merge

G ME H A QB K D PF L J NC R

J NR CP DF LA QB KM GH E
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And merge again

H ME G K QA B L PD F N RC J

G ME H A QB K D PF L J NC R
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And again

M QH KE GA B P RL NF JC D

H ME G K QA B L PD F N RC J
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And one last time

M QH KE GA B P RL NF JC D

E FC DA B J KG H N PL M Q R
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Done!

E FC DA B J KG H N PL M Q R
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function y = mergeSort(x)
% x is a vector.  y is a vector 
% consisting of the values in x 
% sorted from smallest to largest.

n = length(x);
if n==1

y = x;
else

m  = floor(n/2);
y1 = mergeSort(x(1:m));
y2 = mergeSort(x(m+1:n));
y  = merge(y1,y2);

end
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An important sub-problem is the merging to two 
sorted arrays into one single sorted array

12 33 4535

15 42 6555 75

12 15 3533 42 45 55 7565


