
CS100M Lecture 24 2008/4/17

Lecture slides 1

Previous Lecture:
Acoustic data: frequency computation
Touchtone phone

Today’s Lecture:
“Divide and conquer” strategies

Binary search
Merge sort
Recursion

April 17, 2008 Lecture 24 2

Searching for an item in a collection

Is the collection organized?
What is the organizing scheme?

In
di

an
a

Jo
ne

s
an

d
th

e
Ra

id
er

s
of

 t
he

 L
os

t
A

rk

April 17, 2008 Lecture 24 3

Not organized?

May need to look through the whole collection
to find the target item
E.g., find value x in vector v

Linear search

v

x

% Linear Search
% f is index of first occurrence
% of value x in vector v.
% f is -1 if x not found.
k= 1;
while k<=length(v) && v(k)~=x

k= k+ 1;
end
if k>length(v)

f= -1; % signal for x not found
else

f= k;
end

Suppose another vector is twice as long as v. The
expected “effort” required to do a linear search is …

A. squared

C. the same

B. doubled

D. halved

April 17, 2008 Lecture 24 5

An ordered (sorted) list

The Manhattan phone
book has 1,000,000+
entries.

How is it possible to
locate a name by
examining just a tiny,
tiny fraction of those
entries?

April 17, 2008 Lecture 24 6

Key idea: repeated halving

To find the page containing Pat Reed’s number…

while (Phone book is longer than 1 page)
Open to the middle page.
if “Reed” comes before the first entry,

Rip and throw away the 2nd half.
else

Rip and throw away the 1st half.
end

end

CS100M Lecture 24 2008/4/17

Lecture slides 2

April 17, 2008 Lecture 24 7

What happens to the phone book length?

Original: 3000 pages
After 1 rip: 1500 pages
After 2 rips: 750 pages
After 3 rips: 375 pages
After 4 rips: 188 pages
After 5 rips: 94 pages

After 12 rips: 1 page

April 17, 2008 Lecture 24 8

Binary Search

Repeatedly halving the size of the “search
space” is the main idea behind the method
of binary search.

An item in a sorted array of length n can be
located with just log2 n comparisons.

April 17, 2008 Lecture 24 9

12 15 3533 42 45 51 7362 75 86 98

Binary search: target x = 70

v

L:

Mid:

R:

1

6

12

1 2 3 4 5 6 7 8 9 10 11 12

v(Mid) <= x

So throw away the
left half…

April 17, 2008 Lecture 24 10

12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

6

9

12

1 2 3 4 5 6 7 8 9 10 11 12

x < v(Mid)

So throw away the
right half…

Binary search: target x = 70

April 17, 2008 Lecture 24 11

12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

6

7

9

1 2 3 4 5 6 7 8 9 10 11 12

v(Mid) <= x

So throw away the
left half…

Binary search: target x = 70

April 17, 2008 Lecture 24 12

12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12

v(Mid) <= x

So throw away the
left half…

Binary search: target x = 70

CS100M Lecture 24 2008/4/17

Lecture slides 3

April 17, 2008 Lecture 24 13

12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

8

8

9

1 2 3 4 5 6 7 8 9 10 11 12

Done because
R-L = 1

Binary search: target x = 70
function L = binSearch(x, v)
% Find position after which to insert x. v(1)<…<v(end).
% L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L,R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;

% Keep halving [L,R] until R-L is 1,
% always keeping v(L) <= x < v(R)
while R ~= L+1

m= floor((L+R)/2); % middle of search window
if v(m) <= x

L= m;
else

R= m;
end

end

April 17, 2008 Lecture 24 18

What happens if the values in the sorted vector are
not unique? Say, the target value is in the vector
and that value appears in the vector multiple
times…

A. The first occurrence is identified

C. Any one of the occurrences may be identified

B. The last occurrence is identified

D. Binary search doesn’t work

April 17, 2008 Lecture 24 19

Binary search is efficient, but how do we sort a
vector in the first place so that we can use binary
search?

Many different algorithms out there...
Let’s look at merge sort
An example of the “divide and conquer”
approach

Merge sort: Motivation

What if those two helpers
each had two sub-helpers?

If I have two helpers, I’d…
• Give each helper half the array to

sort
• Then I get back the sorted

subarrays and merge them.

And the sub-helpers each had
two sub-sub-helpers? And…

April 17, 2008 Lecture 24 21

Subdivide the sorting task

J NR CP DF LA QB KM GH E

A QB KM GH E J NR CP DF L

CS100M Lecture 24 2008/4/17

Lecture slides 4

April 17, 2008 Lecture 24 22

Subdivide again

A QB KM GH E J NR CP DF L

M GH E A QB K P DF L J NR C

April 17, 2008 Lecture 24 23

And again

M GH E A QB K P DF L J NR C

M GH E A QB K P DF L J NR C

April 17, 2008 Lecture 24 24

And one last time

J NR CP DF LA QB KM GH E
April 17, 2008 Lecture 24 25

Now merge

G ME H A QB K D PF L J NC R

J NR CP DF LA QB KM GH E

April 17, 2008 Lecture 24 26

And merge again

H ME G K QA B L PD F N RC J

G ME H A QB K D PF L J NC R

April 17, 2008 Lecture 24 27

And again

M QH KE GA B P RL NF JC D

H ME G K QA B L PD F N RC J

CS100M Lecture 24 2008/4/17

Lecture slides 5

April 17, 2008 Lecture 24 28

And one last time

M QH KE GA B P RL NF JC D

E FC DA B J KG H N PL M Q R

April 17, 2008 Lecture 24 29

Done!

E FC DA B J KG H N PL M Q R

April 17, 2008 Lecture 24 30

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1

y = x;
else

m = floor(n/2);
y1 = mergeSort(x(1:m));
y2 = mergeSort(x(m+1:n));
y = merge(y1,y2);

end

April 17, 2008 Lecture 24 31

An important sub-problem is the merging to two
sorted arrays into one single sorted array

12 33 4535

15 42 6555 75

12 15 3533 42 45 55 7565

