- Previous Lecture:
- Acoustic data: frequency computation
- Touchtone phone
- Today's Lecture:
- "Divide and conquer" strategies
- Binary search
- Merge sort
- Recursion

Not organized?

- May need to look through the whole collection to find the target item
- E.g., find value x in vector v

- Linear search

Apil 17, 2008

Searching for an item in a collection
Is the collection organized?
What is the organizing scheme?


```
% Linear Search
```

\% f is index of first occurrence
$\%$ of value x in vector v.
$\% f$ is -1 if x not found.
k= 1;
while $k<=$ length(v) \&\& $v(k) \sim=x$
k= k+ 1;
end
if $k>l e n g t h(v)$
$f=-1 ; \%$ signal for x not found C. the same
else
$\mathrm{f}=\mathrm{k}$;
D. halved
end

Suppose another vector is twice as long as v. The expected "effort" required to do a linear search is ...

Key idea: repeated halving
To find the page containing Pat Reed's number...
while (Phone book is longer than I page)
Open to the middle page.
if "Reed" comes before the first entry,
Rip and throw away the $2^{\text {nd }}$ half.
else
Rip and throw away the Ist half.
end
end

April 17, 2008
Lecture 24

```
What happens to the phone book length?
    Original: }3000\mathrm{ pages
After 1 rip: }1500\mathrm{ pages
After 2 rips: }750\mathrm{ pages
After 3 rips: }375\mathrm{ pages
After 4 rips: }188\mathrm{ pages
After 5 rips: }94\mathrm{ pages
```

After 12 rips: 1 page

April 17, 2008

Binary search: target $\mathrm{x}=70$
$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

12	15	33	35	42	45	51	62	73	75	86	98

\uparrow

L: 1
Mid: 6
R: 12
Apil 17, 2008

Binary search: target $\mathrm{x}=70$

L: 6

$$
v(\text { Mid) }<=x
$$

Mid: 7

R: 9 So throw away the left half...

Apil 17, 2008
eecture 24

Binary Search

Repeatedly halving the size of the "search space" is the main idea behind the method of binary search.

An item in a sorted array of length n can be located with just $\log _{2} n$ comparisons.


```
function L = binSearch(x, v)
% Find position after which to insert x. v(1)<..<<v(end).
% L is the index such that v(L) <= x < v(L+1);
% L=0 if }x<v(1). If x>v(end), L=length(v) but x~=v(L)
% Maintain a search window [L,R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;
```

\% Keep halving [L,R] until R-L is 1,
\% always keeping $v(L)<=x<v(R)$
while $R \sim=L+1$
$m=$ floor $((L+R) / 2)$; middle of search window
if $v(m)<=x$
$\mathrm{L}=\mathrm{m}$;
else
$R=m ;$
end
end

What happens if the values in the sorted vector are not unique? Say, the target value is in the vector and that value appears in the vector multiple times...

Apil 17, 2008 Leture 24 18

Binary search is efficient, but how do we sort a vector in the first place so that we can use binary search?

- Many different algorithms out there...
- Let's look at merge sort
- An example of the "divide and conquer" approach

And one last time	
■ாாாாロாロ	
	成回回凧可可

And again		
प｜		
mome		


```
function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.
n = length(x);
if n==1
            y = x;
else
    m = floor(n/2);
        y1 = mergeSort(x(1:m));
        y2 = mergeSort(x(m+1:n));
        y = merge(y1,y2);
end
```

 Apil 17, 2008
 An important sub-problem is the merging to two sorted arrays into one single sorted array

$$
\begin{array}{|l|l|l|l|}
\hline 12 & 33 & 35 & 45 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|l|l|}
\hline 15 & 42 & 55 & 65 & 75 \\
\hline
\end{array}
$$

12	15	33	35	42	45	55	65	75

Apil 17, 2008

