- Previous Lecture:

- Acoustic data: frequency computation
- Touchtone phone
- Today's Lecture:
- "Divide and conquer" strategies
- Binary search
- Merge sort
- Recursion
$\% \mathrm{f}$ is index of first occurrence
\% of value x in vector v.
\% f is -1 if x not found.
$\mathrm{k}=1$;
while $k<=$ length(v) \&\& $v(k) \sim=x$
$\mathrm{k}=\mathrm{k}+1$;
end
if $k>$ length(v)
$f=-1$; \% signal for x not found C. the same
else
$\mathrm{f}=\mathrm{k} ;$
end

```
% Linear Search
```

```
% Linear Search
```

Suppose another vector is twice as long as v. The expected "effort" required to do a linear search is ..
D. halved
D. halved
end

What happens if the values in the sorted vector are not unique? Say, the target value is in the vector and that value appears in the vector multiple times...
A. The first occurrence is identified
B. The last occurrence is identified
C. Any one of the occurrences may be identified
D. Binary search doesn't work

Binary Search

Repeatedly halving the size of the "search space" is the main idea behind the method of binary search.

An item in a sorted array of length n can be located with just $\log _{2} n$ comparisons.

$$
\text { located with just } \log _{2} \mathrm{n} \text { comparisons. }
$$

```
function L = binSearch(x, v)
```

function L = binSearch(x, v)
% Find position after which to insert x. v(1)<...<v(end).
% Find position after which to insert x. v(1)<...<v(end).
% L is the index such that v(L) <= x < v(L+1);
% L is the index such that v(L) <= x < v(L+1);
% L=0 if }x<v(1). If x>v(end), L=length(v) but x~=v(L)
% L=0 if }x<v(1). If x>v(end), L=length(v) but x~=v(L)
% Maintain a search window [L,R] such that v(L)<=x<v(R).
% Maintain a search window [L,R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;
L=0; R=length(v)+1;
% Keep halving [L,R] until R-L is 1,
% Keep halving [L,R] until R-L is 1,
% always keeping v(L) <= x < v(R)
% always keeping v(L) <= x < v(R)
while R ~= L+1
while R ~= L+1
m= floor((L+R)/2); % middle of search window
m= floor((L+R)/2); % middle of search window
if v(m)<= x
if v(m)<= x
else
else
end
end
end

```
end
```



```
function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.
n = length(x);
if n==1
        y = x;
else
    m = floor(n/2);
    y1 = mergeSort(x(1:m));
    y2 = mergeSort(x(m+1:n));
    y = merge(y1,y2);
end
```

```
function z = merge(x,y)
n = length(x); m = length(y);
z = zeros(1,n+m);
ix = 1; iy = 1;
for iz=1:(n+m)
    if ix > n
        z(iz)=
    elseif iy>m
        z(iz)=
    elseif x(ix) <= y(iy)
        z(iz)=
    else
        z(iz)=
    end
end
```


The basic operation

if the triangle is big enough
Connect the midpoints.
Color the interior triangle mauve.
else
Color the whole triangle yellow.
end
Why is mesh generation a divide \& conquer process?


```
function drawTriangle ( \(x, y\), level)
    \% Draw recursively colored triangles.
    \(\% \mathrm{x}, \mathrm{y}\) are 3 -vectors that define the vertices of a triangle.
    if level==5
    \% Recursion limit (depth) reached
    fill(x,y,'y') \% Color whole triangle yellow
else
    \% Draw the triangle.
    plot([x \(x(1)],[y y(1)], ' k ')\)
    plot([x \(x(1)],[y ~ y(1)], ' k\)
\% Determine the midpoints..
        \(a=[(x(1)+x(2)) / 2(x(2)+x\)
        \(a=[(x(1)+x(2)) / 2(x(2)+x(3)) / 2(x(3)+x(1)) / 2] ;\)
        \(b=[(y(1)+y(2)) / 2(y(2)+y(3)) / 2(y(3)+y(1)) / 2]\);
    \% Draw and color the interior triangle mauve
        pause
        fill(a,b,'m')
        pause
    \% Apply the process to the three "corner" triangles..
        drawTriangle([x(1) a(1) a(3)],[y(1) b(1) b(3)], level+1)
        drawTriangle([x(2) a(2) a(1)],[y(2) b(2) b(1)], level+1)
        drawTriangle([x(3) a(3) a(2)],[y(3) b(3) b(2)],level+1)
end
        April 17, 2008
                            Lecture 24
```

