- Previous Lecture:
- Working with sound files
- Today's Lecture:
- Frequency computation
- Touchtone phone
- Announcement:
- Section in the computer lab this week
- Prelim 3 tonight 7:30-9pm
- A-F in Kimball BII
- G-L Ives 305
- M-R in Upson BI7
- S -Z in Olin 255

We looked at the time domain last lecture

A "pure-tone" sound is a sinusoidal function

$$
\begin{aligned}
& y(t)=\sin (2 \pi \underline{\omega t}) \\
& \underline{\omega}=\text { the frequency }
\end{aligned}
$$

Higher frequency means that $y(t)$ changes more rapidly with time.

April 15, 2008
Leeture 23

Digitize for Graphics
 Digitize for Sound

\% Sample "Rate"
n = 200
\% Sample Rate Fs $=32768$
\% Sample times tFinal = 1; t = 0:(1/Fs):tFinal
tFinal = 1;
t = 0:(1/n):tFinal
\% Digitized Plot...
omega = 8;
$y=\sin \left(2^{*}\right.$ pi*omega* $\left.^{*}\right)$
plot(t,y)
\% Digitized sound... omega = 800; $y=\sin \left(2 *\right.$ pi*omega*t $\left.^{*}\right)$; sound (y, Fs)

Equal-Tempered Tuning						
0 A	55.00	110.00	220.00	440.00	880.00	1760.00
1 A\#	58.27	116.54	233.08	466.16	932.33	1864.66
2 B	61.74	123.47	246.94	493.88	987.77	1975.53
3 C	65.41	130.81	261.63	523.25	1046.50	2093.01
$4 \mathrm{C} \#$	69.30	138.59	277.18	554.37	1108.73	2217.46
5 D	73.42	146.83	293.67	587.33	1174.66	2349.32
6 D\#	77.78	155.56	311.13	622.25	1244.51	2489.02
7 E	82.41	164.81	329.63	659.26	1318.51	2637.02
8 F	87.31	174.61	349.23	698.46	1396.91	2793.83
$9 \mathrm{~F} \#$	92.50	185.00	369.99	739.99	1479.98	2959.95
10 G	98.00	196.00	391.99	783.99	1567.98	3135.96
11 G\#	103.83	207.65	415.31	830.61	1661.22	3322.44
12 A	110.00	220.00	440.00	880.00	1760.00	3520.00

Entries are frequencies. Each column is an octave. Magic factor $=2^{\wedge}(1 / 12) . C 3=261.63, \mathrm{~A} 4=440.00$ Apil 15, 2008 Lecture 23 \square

A frequency is associated with each row \& column. So two frequencies are associated with each button.

Signal for button 5:

```
Fs = 32768;
tFinal = .25;
t = 0:(1/Fs):tFinal;
yR = sin(2*pi*770*t);
yC = sin(2*pi*1336*t)
y = (yR + yC)/2;
sound(y,Fs)
```

Apil 15, 2008

To Minimize Ambiguity...
No frequency is a multiple of another.

The difference between any two frequencies does not equal any of the frequencies.

The sum of any two frequencies does not equal any of the frequencies.

What does the signal look like for a multi-digit call?

Buttons pushed at equal time intervals

Fourier Analysis

Once a band is isolated, we know it is the sum of two sinusoids:

What are the two frequencies?

Use Fourier analysis to find out.

Apil 15, 2008
Lecture 23
makeCall.m
findNumber.m showFindNumber.m

