- Previous Lecture:
- Working with sound files
- Today's Lecture:
- Frequency computation
- Touchtone phone
- Announcement:
- Section in the computer lab this week
- Prelim 3 tonight 7:30-9pm
- A-F in Kimball BII
- G-L Ives 305
- M-R in Upson BI7
- $\mathrm{S}-\mathrm{Z}$ in Olin 255

A "pure-tone" sound is a sinusoidal function
$y(t)=\sin (2 \pi \cdot 8 t)$
5

```
Adding Sinusoids
```

```
Fs = 32768; tFinal = 1;
```

Fs = 32768; tFinal = 1;
t = 0:(1/Fs):tFinal;
t = 0:(1/Fs):tFinal;
C3 = 261.62;
C3 = 261.62;
yC3 = sin(2*pi*C3*t);
yC3 = sin(2*pi*C3*t);
A4 = 440.00;
A4 = 440.00;
yA4 = sin(2*pi*A4*t);
yA4 = sin(2*pi*A4*t);
y = (yC3 + yA4)/2;
y = (yC3 + yA4)/2;
sound(y,Fs)

```
sound(y,Fs)
```

Apil 15, 2008

$$
\begin{aligned}
& y(t)=\sin (2 \pi \omega t) \\
& \underline{\omega}=\text { the frequency }
\end{aligned}
$$

Higher frequency means that $y(t)$ changes more rapidly with time.

Apil 15, 2008
Lecture 23

Digitize for Graphics Digitize for Sound
\% Sample "Rate"
n = 200
\% Sample Rate Fs $=32768$
\% Sample times
tFinal = 1;
t = 0:(1/n):tFinal
\% Digitized Plot...
omega = 8;
$y=\sin \left(2 *\right.$ pi*omega* $\left.^{*}\right)$
plot(t,y)
Sample times tFinal = 1; t = 0:(1/Fs):tFinal
\% Digitized sound... omega = 800; $y=\sin \left(2^{*} \mathrm{pi}^{*}\right.$ omega*t); sound (y, Fs)

Apil 15, 2008
Lecture 23

A frequency is associated with each row \& column.
So two frequencies are associated with each button.

Signal for button 5:

```
Fs = 32768;
tFinal = . 25;
t = 0:(1/Fs):tFinal;
yR = sin(2*pi*770*t);
yC = sin(2*pi*1336*t)
y = (yR + yC)/2;
sound(y,Fs)
```

April 15, 2008

"Noisy" signal

Each band approximately
matches one of the
twelve
"fingerprints." There is
noise between the
button pushes.

Buttons pushed at unequal time intervals

The Segmentation Problem
When does a band begin?
When does a band end?
Somewhat like the problem of finding an edge in a digitized picture. Anel15.2008

Fourier Analysis

Once a band is isolated, we know it is the sum of two sinusoids:

What are the two frequencies?

Use Fourier analysis to find out.

