- Previous Lecture:
- Review matrix, cell array, structure array
- Today's Lecture:
- Working with sound files
- Review vector, graphics, struct array, cell array
- Announcement:
- P5 due 4/II (tomorrow) at 3pm
- Review session Sunday 1-2:30pm, location TBA
- Prelim 3 Tuesday 7:30-9pm

```
Reading and playing .wav files
    [y,rate,nBits] = wavread(`austin.wav')
sound(y,rate)
```

A wav file is for the computer to processsoftware is required to play the sound.

Computing with sound in Matlab requires that we first convert the wav format data into simple numeric data-the job of wavread.

April 10,2008
Lecture 22

Sampling rate affects the quality

If sampling not frequent enough, then the discretized sound will not capture the essence of the continuous sound...

Resolution also affects the quality
Typically, each sampled value is encoded as an 8bit integer in the .wav file.

Possible values: -I28, -I27, ...,-I, $0, I, \ldots, I 27$
Loud: -I20, 90, I22, etc.
Quiet: 3, $10,-5$

16-bit used when very high quality is required.

wavread

[y,rate,nBits]= wavread('austin.wav');
n = length(y);

```
n =
rate =
            54453
            11025
nBits =
8
```

austin.wav
encoded the
sound with 54,453
8 -bit numbers
that were
gathered over a
span of about 54453/11025 secs

April 10,2008
Lecture 22

Example: playlist
Suppose we have a set of .wav files, e.g.,
austin.wav
sp_beam.wav
sp_oz6.wav
and wish to play them in succession.

Apiri 10, 2008
Lecture 22

```
Possible solution
playList = {'austin',...
    'sp_beam',...
    'sp_oz6'};
for k=1:length(playList)
    [y,rate] = wavread(playList{k});
    sound(y,rate)
end
```

Problem: will start playing sp_beam before austin finishes playing

April 10, 2008
Lecture 22

```
Compute a pause!
for k=1:length(playList)
    [y,rate] = wavread(playList{k});
    sound(y,rate)
    p = length(y)/rate;
    pause(p+1)
                                    Compute how long it'll take and add one second.
```

end

April 10, 2008
Lecture 22

```
function playSegments(SA)
% Play sound data stored in struct array SA.
% SA(k).data stores the k-th segment of
% sound data (from wavread)
% SA(k).rate is sampling rate of k-th seg.
for k= 1:length(SA)
    theData= SA(k).data;
    theRate= SA(k).rate;
    sound(theData, theRate)
    pause(length(theData)/theRate + 1)
end
```


Example

- An interactive graphical environment to visualize sound data
- Allows user to zoom in and out
- Allows user to look forward and back
lookAtSound.m
- As an exercise, add sound to the environment!

Example: store the data from wav files as a struct array for play back later

```
function SA = wavSegments(wnames)
```

\% Build a struct array SA such that
\% SA(k).data stores the data of wnames\{k\}
$\%$ SA(k).rate stores the sampling rate of
\% wav file wnames\{k\}
for $k=1: l e n g t h(w n a m e s)$
[y, rate] = wavread(wnames\{k\});
$S A(k)=$ struct('data', y, \quad rate', rate);
end

A: rate*length(y) B: rate/length(y) C: length(y)/rate

```
Compute a pause!
for k=1:length(playList)
    [y,rate] = wavread(playList{k});
    sound(y,rate)
    % How long does it take
    % to play one file?
end
    B: rate/length(y)
    C: length(y)/rate
```

Example

- An interactive graphical environment to visualize
sound data
- Allows user to zoom in and out
- Allows user to look forward and back
lookAtSound .m
- As an exercise, add sound to the environment!
Aemin.208s

