- Previous Lecture:
- Working with large data files
- Built-in sort function
- Today's Lecture:
- Review matrix, cell array, structure array
- Announcement:
- P5 due $4 / \mathrm{II}$ at 3 pm
- Prelim 3 next Tues. We must know by now if you have an exam conflict.

Can use a cell array to keep the 10 bitmaps

$$
M=\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 ; \ldots \\
1 & 0 & 0 & 0 & 1 ; \ldots \\
0 & 0 & 0 & 1 & 0 ; \ldots \\
0 & 0 & 1 & 0 & 0 ; \ldots \\
0 & 1 & 0 & 0 & 0 ; \ldots \\
1 & 0 & 0 & 0 & 0 ; \ldots \\
1 & 1 & 1 & 1 & 1] ;
\end{array}\right.
$$

$D\{2\}=M$;
Each cell of cell array \mathbf{D} is a numerical matrix.

Still using a cell array to keep the 10 bitmaps

$$
\begin{aligned}
& \text { M = ['01110'; } \\
& \text { '10001';... } \\
& \text { '00010'; ... } \\
& \text { '00100'; ... } \\
& \text { '01000' ; ... } \\
& \text { '10000'; ;.. } \\
& \text { '11111']; }
\end{aligned}
$$

$D\{2\}=M$;
Each cell of cell array \mathbf{D} is a matrix of characters.

April 8,2008

character matrices, can do computation as follows:
\% given $1<=k<=10$
M = D\{k\};
if strcmp(M(4,3),'1')
disp('Middile light is on')
end

function $B=r e v e r s e C o l(A)$
\% B is a matrix obtained by reversing
\% the order of the columns in matrix A
[nr, nc]= size(A);
$B=z e r o s(n r, n c)$;
for $k=1: n c$

$$
B(:, k)=A(:, n c-k+1) ;
$$

end
function showNumber (n)
\% Digital display of integer $n, n>0$
hold on; axis equal off
\% Convert n to a vector of digits
\% Display the digits in v
D = TheDigits; $\% \mathrm{D}\{\mathrm{k}\}$ is matrix encoding digit k

Choice for storing the bit maps

Cell array better than struct array

No point in having a structure with one field

Numerical array better than char array

Plan on doing numerical computations with the bit maps-char arrays not handy

```
function revD = reverseDigits
% revD is a 10-by-1 cell array.
% revD{k} is the reversed 7-by-5 bitmap
% of digit k. revD{10} encodes 0.
D= TheDigits;
revD= cell(10,1);
```

```
% A and B have same size
[nr,nc]= size(A);
B= zeros(nr,nc);
for r= 1:nr
    for c= 1:nc
        C(r,c)= abs(A(r,c)-B(r,c));
    end
end
```

\% A and B have same size $C=\operatorname{abs}(A-B)$;

$$
\begin{aligned}
& \mathbf{C} \text { is a } 0 \text {-I matrix where } \mathbf{1} \text { indicates that } \\
& \mathbf{A (\mathbf { i } , \mathbf { j })} \text { and } \mathbf{B}(\mathbf{i}, \mathbf{j}) \text { are different. }
\end{aligned}
$$

