

## Structures

Lecture 19 (Apr 1)
CS100M - Spring 2008

## Announcements

- Section is in the lab this week
- The last project was more challenging than previous ones
- Problem 2 was more difficult than problem 1
- Pulling out the bits
- Working with uint8
- Some of the problem 1 functions could be very brief
- Could use vectorized code
- Please don't violate Academic Integrity
- We run a program to detect similar code
- Project 5 should be available late today


## Data is Often Related

- A point in the plane has an $\times$ coordinate and $y$ coordinate
- If a program manipulates lots of points, there will be lots of $x$ 's and $y$ 's
- Anticipate clutter
- Is there a way to "package" the two coordinate values?


## Packaging Affects Thinking

- Our Reasoning Level:
- $P$ and $Q$ are points
- Compute the midpoint M of the connecting line segment
- Behind the scenes we do this:
- We've seen this before
- Functions are used to "package" calculations
- This kind of packaging (a type of abstraction) elevates the level of our reasoning
- Critical for problem solving!

$$
\begin{aligned}
& M_{x}=\left(P_{x}+Q_{x}\right) / 2 \\
& M_{y}=\left(P_{y}+Q_{y}\right) / 2
\end{aligned}
$$

## Simple Example

$$
\begin{aligned}
& \text { p1 }=\operatorname{struct}\left(x^{\prime} x^{\prime}, 3, y^{\prime}, 4\right) ; \\
& \text { p2 }=\operatorname{struct}\left({ }^{\prime} x^{\prime},-1,,^{\prime} y^{\prime}, 7\right) ; \\
& D=\operatorname{sqrt}\left((p 1 . x-p 2 . x)^{\wedge} 2+(p 1 . y-p 2 . y)^{\wedge} 2\right) ;
\end{aligned}
$$

Distance between two points
p1.x, p1.y, p2.x, p2.y are participating as variables-because they are

## Initialization

p1 = struct('x', 3, 'y', 4);

- p 1 is a structure
- The structure has two fields
- Their names are $x$ and $y$
- They are assigned the values 3 and 4

How to Visualize p1

$p 1=\operatorname{struct}\left({ }^{\prime} x^{\prime}, 3, ~ ' y ', ~ 4\right) ;$

## Accessing a Field


$A=p 1 . x+p 1 . y \quad$ Assigns the value 7 to $A$

## Assigning to a Field


$p 1 . x=p 1 \cdot y^{\wedge} 2$
Assigns the value 16 to $p 1 . x$

## Another Example

> A = struct('name', 'New York', 'capital', 'Albany', 'Pop', 15.5);

- Can have combinations of string fields and numeric fields


## Legal/Illegal Maneuvers

$Q=\operatorname{struct}\left({ }^{\prime} x^{\prime}, 5, ~ ' y ', ~ 6\right) ;$
$R=Q ; \quad$ \% Legal: $R$ is a copy of $Q$
$S=(Q+R) / 2 ;$
\% Illegal: Cannot add structures
$P=s t r u c t(' x$ ', 3, ' $y$ '); \% Illegal: Args must be in pairs
P. $y=4$;
$\left.P=\operatorname{struct}\left(x^{\prime}, 3,{ }^{\prime} y^{\prime},[]\right]\right)$ \% Legal: Empty array as a "place holder"
P. $y=4$;

## Structures in Functions

function $d=\operatorname{dist}(P, Q)$
$\% P$ and $Q$ are points.
$\% \mathrm{~d}$ is the distance between them

$$
d=\operatorname{sqrt}\left((P . x-Q . x)^{\wedge} 2+(P . y-Q . y)^{\wedge} 2\right) ;
$$

## Sample "Make" Function

function $P=$ MakePoint $(x, y)$
$\% P$ is a point.
$\% P . x$ and P.y are assigned the values $x$ and $y$.
$P=\operatorname{struct}\left({ }^{\prime} x^{\prime}, x, ' y\right.$ ',$\left.y\right) ;$
-Good style
-Highlights the structure's definition

## Functions and Structures

function DrawLS (P, Q, c)
\% Draws a line segment connecting points
$\% P$ and Q; color is specified by c.
\% Assumes hold is on.
$\operatorname{plot}([P . x$ Q.x], [P.y Q.y], c)

## Script for Pick Up Sticks

$s=$ 'rgbmcy';
set(gcf,'color','k')
axis equal off
hold on
for $k=1: 100$
Generates two random points and chooses one of six colors randomly
$P=$ MakePoint(randn,randn);
$Q=$ MakePoint(randn,randn);
$c=s($ ceil(6*rand));
DrawLS $(P, Q, c)$
end


## Structure Arrays

- An array whose components are structures
- All the structures must be the same

Example: A point array...

## An Array of Points


$P(1)=$ MakePoint(.50, .86)

## An Array of Points


$P(2)=$ MakePoint(-.50, .86)

## An Array of Points


$P(3)=$ MakePoint(-1.0,0.0)

## An Array of Points


$P(4)=$ MakePoint(-.50,-. 86)

## An Array of Points


$P(5)=$ MakePoint( $.50,-.86)$

## An Array of Points


$P(6)=$ MakePoint(1.0,0.0)

## Function Returning An Array of Points

function $P=$ CirclePoints( $n$ )
$\% P$ is a structure array holding $n$ points around a circle.
theta $=2^{*} \mathrm{pi} / \mathrm{n}$;
for $k=1: n$
$c=\cos \left(t h e t a^{*} k\right) ;$
$s=\sin \left(\right.$ theta* $\left.^{*} k\right)$;
$P(k)=$ MakePoint $(c, s)$;
end

## Example Problem

- Place $n$ points uniformly around the unit circle
- Draw all possible triangles obtained by connecting these points 3-at-a-time

$(i, j, k)=(1,2,6)$



## Will Need This...

function DrawTriangle ( $P, Q, R, c$ )
\% Draw c-colored triangle; triangle vertices are \% points $P, Q$, and $R$.
fill([P.x Q.x R.x P.x], [P.y Q.y R.y P.y], c)
$(\mathrm{i}, \mathrm{j}, \mathrm{k})=(1,2,4)$


$$
(i, j, k)=(1,2,6)
$$



These triangles are all the same:
$(1,2,4),(1,4,2),(2,1,4),(2,4,1),(4,1,2),(4,2,1)$

## No!

```
for i=1:n
    for j=1:n
        for k=1:n
            Draw triangle with vertices P(i), P(j), and P(k)
        end
    end
end
\(i, j\), and \(k\) should be different
```


## Avoiding Duplicates: $\mathrm{i}<\mathrm{j}<\mathrm{k}$

for $i=1: n$
for $j=i+1: n$
for $k=j+1: n$ $\operatorname{disp}([i j k])$
end
end
end


## Question Time

What is the $7^{\text {th }}$ line of output:

$$
\begin{aligned}
& \text { for } i=1: 5 \\
& \qquad \text { for } j=i+1: 5 \\
& \quad x=10 \star i+j \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

# $\begin{array}{lllll}\text { A. } 7 & \text { B. } 21 & \text { C. } 22 & \text { D. } 23 & \text { E. Other }\end{array}$ 

## Triangle Solution!

for $i=1: n$
for $j=i+1: n$
for $k=j+1: n$
DrawTriangle( $P(i), P(j), P(k), ' m ')$
DrawPoints( $P$ )
pause
DrawTriangle( $P(i), P(j), P(k), ' k ')$
end
end
end

## Structures with Array Fields

- Let's develop a structure that can be use to represent a colored disk
- Four fields:
xc: x-coordinate of center
$y c: y$-coordinate of center
r: radius
c: rgb color vector
- Example:

D1 = struct('xc',1,'yc', 2,'r', 3,'c',[1101])
D2 = struct('xc',4,'yc',0,'r',1,'c',[., 2. . .3])

## Problem

- Lets compute the "average" of D1 and D2:

$$
\begin{aligned}
& r=(D 1 . r+D 2 . r) / 2 \\
& x c=(D 1 . x c+D 2 . x c) / 2 \\
& y c=(D 1 . y c+D 2 . y c) / 2 \\
& c=(D 1 . c+D 2 . c) / 2
\end{aligned}
$$

$D=\operatorname{struct}\left(' x c^{\prime}, x c, ' y c^{\prime}, y c,{ }^{\prime} r^{\prime}, r,{ }^{\prime} c^{\prime}, c\right) ;$

## Example



Example


Example


## A Structure's Field Can Hold a Structure

A = MakePoint $(2,3)$
$B=$ MakePoint $(4,5)$
$L=\operatorname{struct}\left(P^{\prime}, A, Q^{\prime}, B\right)$

- This could be used to represent a line segment with endpoints $P$ and $Q$, for instance
$x=$ L.P.y $\%$ Assigns 3 to $x$


## Question Time

How do you set variable $g$ to the green-color component of disk D?
$D=\operatorname{struct}\left(' x c^{\prime}, x c, ~ ' y c '^{\prime}, y c, ~ ' r ', r, ~ ' c ', c\right) ;$

$$
\begin{aligned}
& \text { A. } \quad g=D . g: \\
& \text { B. } \quad g=D . C . g: \\
& \text { C. } \quad g=\text { D.c(2); } \\
& \text { E. Other }
\end{aligned}
$$

