Data is Often Related

- A point in the plane has an x coordinate and y coordinate
- If a program manipulates lots of points, there will be lots of x 's and y 's
- Anticipate clutter
- Is there a way to "package" the two coordinate values?
Initialization
$p 1=\operatorname{struct}\left(x^{\prime}, 3, y^{\prime}, 4\right)$;
• $p 1$ is a structure
- The structure has two fields
- Their names are x and y
- They are assigned the values 3 and 4

Legal/Illegal Maneuvers

$Q=\operatorname{struct}\left({ }^{\prime} x^{\prime}, 5, ' y\right.$ ', 6);
$R=Q ; \quad$ \% Legal: R is a copy of Q
$S=(Q+R) / 2 ; \quad$ \% Illegal: Cannot add structures

P. $y=4$;
$P=\operatorname{struct}\left({ }^{\prime} x^{\prime}, 3, y^{\prime} y^{\prime},[]\right) ;$ Legal: Empty array as a "place holder"
P. $\mathrm{y}=4$;

Packaging Affects Thinking

- Our Reasoning Level:
- We've seen this before
- Functions are used to "package" calculations
- P and Q are points
- Compute the midpoint M of
the connecting line
segment
- Behind the scenes we do this:
- This kind of packaging (a type of abstraction) elevates the level of our reasoning
- Critical for problem solving!
$M_{x}=\left(P_{x}+Q_{x}\right) / 2$
$M_{y}=\left(P_{y}+Q_{y}\right) / 2$

Sample "Make" Function

function $P=$ MakePoint (x, y)
$\% P$ is a point.
$\% P . x$ and P.y are assigned the values x and y.
$P=\operatorname{struct}(' x ', x, ' y$ ',$y)$;

- Good style
-Highlights the structure's definition

Functions and Structures
function DrawLS (P, Q, c)
\% Draws a line segment connecting points
\% P and Q; color is specified by c.
\% Assumes hold is on.
plot([P.x Q.x], [P.y Q.y], c)

Function Returning An Array of Points
function $P=$ CirclePoints(n)
$\% P$ is a structure array holding n points around a circle.
theta $=2^{*} \mathrm{pi} / \mathrm{n}$;
for $k=1$: n
$c=\cos (t h e t a * k) ;$
$s=\sin ($ theta*k);
$P(k)=$ MakePoint (c, s);
end

Avoiding Duplicates: $\mathrm{i}<\mathrm{j}<\mathrm{k}$

for $\mathrm{i}=1: n$
for $j=i+1: n$
for $k=j+1: n$
disp([i j k])
end
end
end

Structures with Array Fields

- Let's develop a structure that can be use to represent a colored disk
- Four fields:
$x c: x$-coordinate of center
$y c: y$-coordinate of center
r : radius
c: rgb color vector
- Example:

D1 = struct('xc', 1,'yc', 2,'r', 3,'c', [1 0101$])$
D2 $=$ struct('xc', 4,'yc', 0,'r', 1,'c','[., 2 .5 .3])

Triangle Solution!

for $\mathrm{i}=1: n$
for $j=i+1: n$
for $k=j+1: n$
DrawTriangle($P(i), P(j), P(k), ' m ')$
DrawPoints(P)
pause
DrawTriangle($\left.P(i), P(j), P(k),{ }^{\prime} k '\right)$
end
end
end

A Structure's Field Can Hold a Structure
$A=$ MakePoint $(2,3)$
$B=$ MakePoint $(4,5)$
$L=\operatorname{struct}\left(P^{\prime}, A, Q^{\prime}, B\right)$

- This could be used to represent a line segment with endpoints P and Q, for instance
$x=$ L.P.y $\%$ Assigns 3 to x

