
Filtering Images

Lecture 16 (Mar 25)
CS100M – Spring 2008

Announcements

Section is in the classroom this week

Questions on Project 4?
Use simple arithmetic instead of Matlab functions to get
the base-4 digits that you need

Recall
An image in Matlab is just
an array

A 2D array of uint8 values
for a gray-scale image
A 3D array consisting of 3
layers (red, green, blue)
for a color image

Each layer is a 2D array
of uint8 values

Images in a file are usually
compressed

Matlab uses imread and
imwrite

Matlab uses imshow or
image to display an image

rgb2gray

A = imread('LawSchool.jpg');
bwA = rgb2gray(A);
imwrite(bwA,‘LawSchoolBW.jpg')

Why not take Average?

bwA = uint8(zeros(m,n));
for i=1:m
for j = 1:n

bwA(i,j) = (A(i,j,1) + A(i,j,2) + A(i,j,3))/3;
end

end
imwrite(bwA,‘LawSchoolBW.jpg')

Why not take Max?

bwA = uint8(zeros(m,n));
for i=1:m
for j = 1:n

bwA(i,j) = max([A(i,j,1) A(i,j,2) A(i,j,3)]);
end

end
imwrite(bwA,‘LawSchoolBW.jpg')

Max:

Matlab:

Problem: Produce a Negative

Idea

If matrix A represents the image and

B(i,j) = 255 – A(i,j)

for all i and j, then B will represent the negative

uint8 values
uint8

= unsigned 8-bit integer

28 = 256
Values are between 0 and
255 (inclusive)

Arithmetic with uint8
produces uint8 results

Results that are too big
are replaced with 255
Results that are negative
are replaced with 0

The Matlab Workspace
shows the type for each of
your variables

imread creates an array of
type uint8

imwrite converts numbers
to uint8 before writing

1458-by-2084

150 149 152 153 152 155
151 150 153 154 153 156
153 2 3 1 155 158
154 2 1 2 156 159
156 1 1 3 158 161
157 156 159 160 159 162

Dirt!

The
“dirty pixels”
look out of place

Can We Filter Out the “Noise”?

1458-by-2084

150 149 152 153 152 155
151 150 153 154 153 156
153 ? ? ? 155 158
154 ? ? ? 156 159
156 ? ? ? 158 161
157 156 159 160 159 162

Idea

Assign “typical”
neighborhood
value to each
dirty pixels

Getting Precise

Typical neighborhood value

How about median?
How about mean?

radius 1 radius 2

Median Filtering

Visit each pixel

Replace its value by the median of the values in its
neighborhood

Using a radius 1 “Neighborhood”

6

7

6

7

6

7

7

6

6

6

7

6

7

0

7

7

6

6

Before After

0
6
6
6
6
7
7
7
7

What We Need…

1. A function that computes the median value in a 2-
dimensional array C:

m = medVal(C)

2. A function that builds the filtered image using
median values of radius r neighborhoods:

B = medFilter(A,r)

Computing Medians

21 89 36 28 19 88 43x :

x = sort(x);

19 21 28 36 43 88 89x :

n = length(x); % n = 7
m = ceil(n/2); % m = 4
med = x(m); % med = 36

If n is even, then use : med = (x(m) + x(m+1))/2

Median of a 2D Array

function med = medVal(C)
% Return the median value in the 2D array C.

% Assemble C's entries into a 1-dim array and sort
[p,q] = size(C);
n = p*q;
v = C(1:n); % Can access 2D-array with 1D subscripts
v = sort(v);

% Compute median of v and assign to med

How to Visit Every Pixel

m = 9

n = 18

for i=1:m
for j=1:n

Compute new gray value for pixel (i,j).
end

end

i = 1

j = 1

Original:

Filtered:

Replace with the median of the values under the window.

i = 1

j = 2

Original:

Filtered:

Replace with the median of the values under the window.

i = 1

j = n

Original:

Filtered:

Replace with the median of the values under the window.

i = 2

j = 1

Original:

Filtered:

Replace with the median of the values under the window.

i = m

j = n

Original:

Filtered:

Replace with the median of the values under the window.

Window Inside…

m = 9

n = 18

New gray value for pixel (7,4) =

medVal(A(6:8,3:5))

Window Partly Outside…

m = 9

n = 18

New gray value for pixel (7,1) =

medVal(A(6:8,1:2))

Window Partly Outside…

m = 9

n = 18

New gray value for pixel (9,18) =

medVal(A(8:9,17:18))

Filtering by Median

function B = MedianFilter(A,r)
% B is a uint8 array obtained from A by median filtering
% with radius r neighborhoods.
[m,n] = size(A);
B = uint8(zeros(m,n));
for i=1:m

for j=1:n
C = pixel (i,j) neighborhood
B(i,j) = MedVal(C);

end
end

The Pixel (i,j) Neighborhood
iMin = max(1,i-r)
iMax = min(m,i+r)
jMin = max(1,j-r)
jMax = min(n,j+r)
C = A(iMin:iMax,jMin:jMax)

r = 1 r = 2

Am

n

B = MedianFilter(A, 2);

Before Filtering

What About Using the Mean
Instead of the Median?

Replace each gray value with the average gray value
in the radius r neighborhood

Mean Filter with r = 3

Why it Fails

150 149 152 153 152 155
151 150 153 154 153 156
153 2 3 156 155 158
154 2 1 157 156 159
156 154 158 159 158 161
157 156 159 160 159 162

85 86
87 88

The mean does not
capture representative
values

And Median Filters Leave
Edges (Pretty Much) Alone

200 200 200 200 200 200
200 200 200 200 200 100
200 200 200 200 100 100
200 200 200 100 100 100
200 200 100 100 100 100
200 100 100 100 100 100

Inside the box, the 200’s stay at 200
and the 100’s stay at 100

Finding Edges

What is an Edge?

Near an edge, grayness values change
abruptly.

200 200 200 200 200 200
200 200 200 200 200 100
200 200 200 200 100 100
200 200 200 100 100 100
200 200 100 100 100 100
200 100 100 100 100 100

The Rate-of-Change Array

Suppose A is an image array with integer values
between 0 and 255

Let B(i,j) be the maximum difference between
A(i,j) and any of its eight neighbors

Example

59

90

58

60

56

62

65

57

81
Rate-of-change at
middle pixel is 30

Computing the Rate-Of-Change Array

function B = Edges(P)
% P is a jpeg file
% B is the corresponding Rate-Of-Change array

A = double(rgb2gray(imread(P)));
[m,n] = size(A);
B = uint8(zeros(m,n));
for i=2:m-1

for j = 2:n-1
B(i,j) = ???

end
end

Recipe for B(i,j)

% The 3-by-3 subarray: A(i,j) and its 8 neighbors…
Neighbors = A(i-1:i+1,j-1:j+1);

% Subtract A(i,j) from each entry…
Diff = Neighbors – A(i,j));

% Take absolute value of each entry..
posDiff = abs(Diff);

% Compute largest value in each column…
colMax = max(posDiff);

% Compute the max of the column max’s…
B(I,j) = max(colMax)

Rate-of-Change Array to Image

B = Edges('Tower.jpg');
% Compute 0-1 array: 1 for B entries > 20

importantPixels = B > 20;
% Display those pixels with maximum brightness

C = uint8(255*importantPixels);
imshow(C)

Threshhold
= 40

Threshhold = 20

Threshhold = 30

Prelim 2

Statistics
Mean 85.9
Median 88
StDev 10.4

Difficulties
1b: Shifting data to match Matlab’s subscript rules
5a: Splitting a string based on a finding a substring

