

Problem: Produce a Negative

What We Need...

1. A function that computes the median value in a 2 dimensional array C :

$$
m=\operatorname{medVal}(C)
$$

2. A function that builds the filtered image using median values of radius r neighborhoods:

$$
B=\text { medFilter }(A, r)
$$

Median of a 2D Array function med $=$ medVal (C) $\%$ Return the median value in the $2 D$ array C. \% Assemble C's entries into a 1-dim array and sort $[p, q]=\operatorname{size}(C)$; $n=p^{*} q$; $v=C(1: n) ; \quad$ Can access 2D-array with 1D subscripts $\mathrm{v}=\operatorname{sort}(\mathrm{v})$; \% Compute median of v and assign to med

Filtering by Median

function $B=$ MedianFilter (A, r)
$\% B$ is a uint8 array obtained from A by median filtering
$\%$ with radius r neighborhoods.
$[m, n]=\operatorname{size}(A)$;
$B=$ uint8(zeros(m,n));
for $\mathrm{i}=1: \mathrm{m}$
for $j=1: n$
$C=$ pixel (i, j) neighborhood
$B(i, j)=$ med $\operatorname{Val}(C)$;
end
end

The Pixel (i,j) Neighborhood
iMin $=\max (1, i-r)$
iMax $=\min (m, i+r)$
j Min $=\max (1, j-r)$
$j \operatorname{Max}=\min (n, j+r)$
c = A(iMin:iMax, jMin:jMax)

What is an Edge?

Near an edge, grayness values change abruptly.

200	200	200	200	200	200
200	200	200	200	200	100
200	200	200	200	100	100
200	200	200	100	100	100
200	200	100	100	100	100
200	100	100	100	100	100

