

A Note on "inf"

A special value that can be regarded as + infinity
$x=10 / 0 \quad$ assigns inf to x
$y=1+x \quad$ assigns inf to y
$z=1 / x \quad$ assigns zero to z
$w<\inf$ is always true if w is numeric

Encapsulate...

function $B=i C a n D o(i, I n v, P O)$
$\%$ B is true if factory i can fill
\% the purchase order. Otherwise, false
nProd = length(PO);
B = true;
for $\mathrm{j}=1$: nProd B = B \&\& (Inv(i,j) >= PO(j));
end

Back To Finding the Cheapest

iBest = 0; minBill $=\mathrm{inf}$;
for $\mathrm{i}=1$: nFact
iBill = iCost(i,C,PO);
if iBill < minBill \&\& iCanDo(i, Inv, PO)
\% Found an Improvement
iBest = i; minBill = iBill;
end
end

Pictures as Arrays

A black and white picture can be encoded as a 2D
Array
Typical:

$$
0<=A(i, j)<=255
$$

(black)
(white)
Values in between correspond to different levels of grayness

A Color Picture is Represented by 3 Arrays

Stack them in a single 3D array
Typical:
$0<=A(i, j, 1)<=255$ (red)
$0<=A(i, j, 2)<=255$ (green)
0 <= $A(i, j, 3)<=255$ (blue)

imread

\% Read image and convert to a 3D array...
>> = imread('LawSchool.jpg');
$\gg[m, n, p]=\operatorname{size}(A)$

Black \& White Images and Negatives

- rgb2gray

A = imread('LawSchool.jpg')
$b w A=\operatorname{rgb} 2 \operatorname{gray}(A)$;
imwrite(bwA,'LawSchoolBW.jpg')

- Idea for producing a negative

If matrix A represents the image and
$B(i, j)=255-A(i, j)$
for all i and j, then B will represent the negative

