\quad Random Web
N web pages
N-by-N Link Array A
A(i,j) is 1 if there is a link on webpage j to webpage i
Generate a random link array and display the connectivity

Random Link Idea
$A(i, j)=1$ with probability $\frac{1}{1+\|i-j\|}$
Intuition:
More likely to be a link if i is close to j

Sample Elevation Function

```
function z=Elev(x,y)
% A function with peaks at (1,1.5), (-2,.5), and (.5,0)
% Peak heights are 100,90, and }80\mathrm{ resp.
    r1 = (x-1)^2 + 3*(y-1.5)^2;
    r2 = 2* (x+2)^2 + (y-5)^2;
    r3 = (x-.5)^2 + 7* ^^^2;
    z=100* exp(-.5\starr1)+90\star}\operatorname{exp}(-.\mp@subsup{3}{}{*}r2)+8\mp@subsup{0}{}{\star}\operatorname{exp}(-.\mp@subsup{4}{}{\star}r3)
```

Its Contour Plot

Making a Contour Plot	
$x=$ linspace $(-5,4,200)$; $y=\operatorname{linspace}(-2.5,6.5,200)$ $A=z e r o s(200,200)$; for $i=1: 200$ for $\mathrm{j}=1: 200$ $A(\mathrm{i}, \mathrm{j})=\operatorname{Elev}(x(\mathrm{j}), y(\mathrm{i}))$; end	- Set up a matrix of function evaluations - Use the built-in function contour - The last argument (15) is lines

Mouse Input via ginput

$$
\begin{aligned}
& {[a, b]=\operatorname{ginput}(2) ;} \\
& \operatorname{plot}(a, b)
\end{aligned}
$$

- $[a, b]=\operatorname{ginput}(n)$ puts the mouseclick coordinates in length-n arrays a and b.
- The plot statement draws the line segment connecting ($a(1), b(1))$ and ($a(2), b(2))$

Determining Elevations along the Line
$n=100 ;$
$t=$ linspace $(0,1, n)$;
$x=\operatorname{linspace}(a(1), a(2), n)$;
$y=$ linspace $(b(1), b(2), n)$;
for $\mathrm{i}=1: n$
\% At "time" $+(\mathrm{i})$ we are at $(x(\mathrm{i}), y(\mathrm{i}))$.
\% Compute elevation at time $t(i)$.
$f(i)=\operatorname{Elev}(x(i), y(i))$;
end
figure
plot(t,f)

