
Matrices
(2D Arrays)

Lecture 14 (Mar 6)
CS100M – Spring 2008

Announcements
Prelim 2 is coming soon!

Date: Thursday, March 13
Time: 7:30-9:00 pm
If you have a conflict, tell
us (email Kelly Patwell)
immediately

We accommodate only
university-accepted
conflicts
Leaving early for spring
break doesn't count

Questions on current
Project?

Today’s topics
Recall

Matlab vectors (1D
arrays)
Characters & Strings

Plans for today
Matrices (2D arrays)

Random Walk Simulation

Start at the middle tile

Repeat until boundary reached:

Pick a compass heading
(N, E, S, W) at random

Move one tile in that
direction

Function that Returns the Path

function [x y] = RandomWalk2D(N)

k = 0; xc = 0; yc = 0;

while abs(xc)<N && abs(yc)< N
Take another hop
Update location (xc,yc)

k = k + 1; x(k) = xc; y(k) = yc;
end

Choosing a Random Direction
if rand < .5

if rand < .5
xc = xc + 1; % East

else
xc = xc - 1; % West

end
else

if rand < .5
yc = yc + 1; % North

else
yc = yc - 1; % South

end
end

2D Arrays (Matrices)
Recall: An array is a named
collection of data values
organized into rows and/or
columns

A 2D array is a table, called
a matrix

This example has 3 rows and
4 columns

3

7

9

183

642

507row 1

row 2

row 3

col 1 col 2 col 3 col 4

Creating a Matrix: “By Hand”

Comma or space separates items in same row
Semicolon “;” indicates a new row

Example:

>> M = [7 0 5; 2 4 6; 3 8 1]

M =

7 0 5
2 4 6
3 8 1

183

642

507

Creating a Matrix: Using a Function
The vector-creating
functions can also create
matrices

>> M = zeros(4, 3)

M =

0 0 0
0 0 0
0 0 0
0 0 0

>> M = ones(3, 5)

M =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Creating a Matrix of Dice Rolls

>> M = ceil(6*rand(5, 10))

M =

2 4 6 4 3 4 5 6 6 2
2 1 4 5 4 3 4 2 5 2
2 5 3 4 5 5 5 6 1 4
5 3 6 3 2 4 6 2 1 2
2 6 5 2 6 3 4 2 6 3

More Matrix Creation
Only the last row is non-zero

>> M = [zeros(4, 3) ; [3 3 3]]

M =

0 0 0
0 0 0
0 0 0
0 0 0
3 3 3

Only the first column is non-
zero

>> M = [[8; 2; 3] zeros(3, 4)]

M =

8 0 0 0 0
2 0 0 0 0
3 0 0 0 0

Even More Matrix Creation
Dimensions must match

>> [ones(2,4); 1:4]

ans =
1 1 1 1
1 1 1 1
1 2 3 4

>> [ones(1,3); 1:4]
??? Error using ==> vertcat
All rows in the bracketed

expression must have the
same number of columns.

If you start filling a matrix,
Matlab will create it for you

Unspecified values are set
to 0

>> B(2, 3) = 77

B =
0 0 0
0 0 77

Subscripting: Individual Entry

Two indices are used to identify the position of a
item in a matrix

M(r, c) refers to the item in row r, column c
Just like vectors, indices for matrices start at 1
Example: M(2, 3) refers to 6

183
642
507

Subscripting: Entire Row

A single colon “:” can be used to represent all indices

>> M = [7 0 5; 2 4 6; 3 8 1]
M =

7 0 5
2 4 6
3 8 1

>> M(2, :)

ans =
2 4 6

183
642
507

M(2, :)

Scaling a Row

M(2, :) = 10 * M(2, :)

183
604020
507

183
642
507

Before After

Subscripting: Entire Column
>> M = [7 0 5; 2 4 6; 3 8 1]

M =
7 0 5
2 4 6
3 8 1

>> M(:, 3)

ans =
5
6
1

183
642
507

M(:, 3)

Incrementing a Column

M(:, 3) = 1 + M(:, 3)

283
742
607

183
642
507

Before After

Subscripting: Subarray
>> M = [7 0 9 5; 2 4 7 6; 3 8 3 1]

M =
7 0 9 5
2 4 7 6
3 8 3 1

>> M(2:3, 3:4)

ans =
7 6
3 1

3
7
9

183
642
507

M(2:3, 3:4)

Zeroing a Subarray

M(2:3, 3:4) = zeros(2, 2)

0
0
9

083
042
507

3
7
9

183
642
507

Before After

Example: Create this Matrix

Goal: Create an m-by-n matrix where every entry is
of the form 10*r+c where r and c are the row and
column indices, respectively

function A = createExample(m, n)
for r = 1:m

for c = 1:n
A(r, c) = 10*r + c;

end
end

33
23
13

34
24
14

353231
252221
151211

Finding the Dimensions of a Matrix

Matlab provides a function for this: size(M)

Examples
[nr, nc] = size(M) % Both # of rows and # of columns
nr = size(M, 1) % # of rows
nc = size(M, 2) % # of columns

Pattern for Traversing a Matrix M

[nr, nc] = size(M);
for r = 1:nr

for c = 1:nc
% Do something with M(r, c)

end
end

Transpose of a Matrix

If A is a matrix then A’ is the transpose of A
The transpose of a matrix just swaps the rows and the
columns

An item at position (r, c) becomes an item at position (c, r)

Example: The transpose of [1:3; 4:6]

654
321

63
52
41

transpose

What is [7 0 5]’ ?

A. Error; the transpose of a vector is illegal
B. The same as [7; 0; 5]
C. [5 0 7]

What happens when this statement is executed?

[nr nc] = size([7 0 5])

A. Error; use length() instead
of size() for a vector

B. nr is 3; nc is 1
C. nr is 1; nc is 3
D. nr and nc are both 3

What happens when these statements are executed?

A = [4 4]
A = [A' ones(2,1)]
A = [1 2 3 4; A A]

A. Error in 2nd statement
B. Error in 3rd statement
C. In the end, A is a 3-by-4

matrix
D. In the end, A is a 4-by-3

matrix
E. In the end, A is a vector of

length 12

What happens when the code is executed?

[nr nc] = size(M);
for r = 1:nr

for c = 1:nc
A(c,r) = M(r,c);

end
end A. A is the same as M, but

with columns in reverse
order

B. A is the same as M, but
with rows in reverse order

C. A is the transpose of M
D. A and M are the same

What does this code do?

[m n] = size(M);
for g = 1:m

for h = 1: floor(n/2)
M(g, h) = M(g, n-h+1);

end
end

A. This code reflects the right half of M onto the left half
B. This code reflects the bottom half of M onto the top half
C. This code leaves the matrix M unchanged
D. This code produces an error message

What does the following code produce?

M = [7 0 5; 2 4 6; 3 8 1]
W = [M(1:2, :) ; M(2:3, 1:2)]

A. W is a 2-by-5 matrix
B. W is a 4-by-2 matrix
C. W is a 4-by-3 matrix
D. There is an error

Finding the Maximum Value

m = max(A)
answer = max(m)

or you can use iteration

183
642
507

A:

7 8 6m: 8

answer

Neighborhood of a Cell

We define the neighborhood of a cell to be the cell
itself and all adjacent cells (including diagonally
adjacent)

6
5
3
5
7

2
2
8
2
0

164
407
183

642
507 The neighborhood

of cell(2,4)

The neighborhood
of cell(5,2)

Min of a Neighborhood

Goal:
Write a function minInNeighborhood(M, row, col)
that reports the minimum value in neighborhood of
cell(row, col) in matrix M

Function header
Function val = minInNeighborhood(M, row, col)
% Return min in neighborhood of (row, col) in M

Ask Yourself Questions

Do we know how to solve a similar problem?
Yes, we already have code to find the min of a matrix

Can we make a neighborhood into a matrix?
Yes, Matlab makes it easy to do submatrices
Neighborhood of M(row, col) is M(row-1:row+1, col-1:col+1)

What happens near the edges?
Doesn’t work near the edges: we “fall off”

What can we do to fix up the edges?
M(max(1,row-1):min(nr,row+1), max(1,col-1):min(nc,col+1))

