

Matrices
 (2D Arrays)

Lecture 14 (Mar 6)
CS100M - Spring 2008

Announcements

- Prelim 2 is coming soon!
- Date: Thursday, March 13
- Time: 7:30-9:00 pm
- If you have a conflict, tell us (email Kelly Patwell) immediately
- We accommodate only university-accepted conflicts
- Leaving early for spring break doesn' \dagger count
- Questions on current Project?
- Today's topics
- Recall
- Matlab vectors (1D arrays)
- Characters \& Strings
- Plans for today
- Matrices (2D arrays)

Random Walk Simulation

Start at the middle tile

Repeat until boundary reached:

Pick a compass heading (N, E, S, W) at random

Move one tile in that direction

Function that Returns the Path

function $[x y]=$ RandomWalk2D(N)
$k=0 ; x c=0 ; y c=0 ;$
while $a b s(x c)<N \& \& a b s(y c)<N$
Take another hop
Update location ($x c, y c$)
$k=k+1 ; x(k)=x c ; y(k)=y c ;$ end

Choosing a Random Direction

```
if rand < .5
    if rand < . }
        xc=xc+1; % Eas }
    else
        xc=xc-1;
        end
    else
    if rand < . 5
        yc=yc+1
    else
        yc=yc-1;
    end
end
```


2D Arrays (Matrices)

- Recall: An array is a named collection of data values organized into rows and/or columns
- This example has 3 rows and 4 columns
- A 2D array is a table, called a matrix
col 1 col 2 col 3 col 4
row 1

7	0	9	5
2	4	7	6
3	8	3	1

Creating a Matrix: "By Hand"

- Comma or space separates items in same row
- Semicolon ";" indicates a new row
- Example:

$$
\begin{aligned}
& \gg M=[705 ; 246 ; 381] \\
& M= \\
& 7 \\
& 7 \\
& 2
\end{aligned} 0 \begin{array}{lll}
2 & 5 & 6 \\
3 & 8 & 1
\end{array} l
$$

7	0	5
2	4	6
3	8	1

Creating a Matrix: Using a Function

- The vector-creating functions can also create matrices

$$
\left.\begin{array}{llll}
\gg M=\operatorname{zeros}(4,3) & \gg M=\operatorname{ones}(3,5) \\
M= \\
0 & 0 & 0 & M= \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) 1 \begin{array}{lllll}
\\
0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 \\
0
\end{array}
$$

Creating a Matrix of Dice Rolls

> $M=\operatorname{ceil}(6 * \operatorname{rand}(5,10))$
$M=$
$\begin{array}{llllllllll}2 & 4 & 6 & 4 & 3 & 4 & 5 & 6 & 6 & 2\end{array}$
$\begin{array}{llllllllll}2 & 1 & 4 & 5 & 4 & 3 & 4 & 2 & 5 & 2\end{array}$
$\begin{array}{llllllllll}2 & 5 & 3 & 4 & 5 & 5 & 5 & 6 & 1 & 4\end{array}$
$\begin{array}{llllllllll}5 & 3 & 6 & 3 & 2 & 4 & 6 & 2 & 1 & 2\end{array}$
$\begin{array}{llllllllll}2 & 6 & 5 & 2 & 6 & 3 & 4 & 2 & 6 & 3\end{array}$

More Matrix Creation

- Only the last row is non-zero
> $M=\left[\operatorname{zeros}(4,3) ;\left[\begin{array}{llll}3 & 3 & 3\end{array}\right]\right]$
$M=$

0	0	0
0	0	0
0	0	0
0	0	0
3	3	3

- Only the first column is nonzero

$$
\gg M=[[8 ; 2 ; 3] \operatorname{zeros}(3,4)]
$$

$$
M=
$$

8	0	0	0	0
2	0	0	0	0
3	0	0	0	0

Even More Matrix Creation

- Dimensions must match
>> [ones(2,4); 1:4]
ans =

1	1	1	1
1	1	1	1
1	2	3	4

>> [ones(1,3); 1:4]
??? Error using ==> vertcat
All rows in the bracketed expression must have the same number of columns.

- If you start filling a matrix, Matlab will create it for you
- Unspecified values are set to 0
$\gg B(2,3)=77$
$B=$
$\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 77\end{array}$

Subscripting: Individual Entry

- Two indices are used to identify the position of a item in a matrix
- $M(r, c)$ refers to the item in row r, column c
- Just like vectors, indices for matrices start at 1
- Example: $M(2,3)$ refers to 6

Subscripting: Entire Row

- A single colon ":" can be used to represent all indices
>> $M=[705 ; 246 ; 381]$
$M=$

7	0	5
2	4	6
3	8	1

>> $M(2,:)$
ans =
246

Scaling a Row

$$
M(2,:)=10 * M(2,:)
$$

7	0	5
2	4	6
3	8	1

Before

7	0	5	
20	40	60	
3	8	1	
After			

Subscripting: Entire Column

$\gg M=[705 ; 246 ; 381]$

$M=$	
7	0
2	4
3	8
>> $M(: 3)$	
ans =	
5	
6	
1	

Incrementing a Column

$$
M(: 3)=1+M(: 3)
$$

7	0	5
2	4	6
3	8	1

Before

7	0	6	
2	4		
3	8		
After			

Subscripting: Subarray

$$
\gg M=\left[\begin{array}{lll}
7 & 0 & 9 \\
5 ; & 47 \text { 6; } 383 & 1
\end{array}\right]
$$

$$
\left.\begin{array}{l}
M= \\
7 \\
\hline
\end{array} 0 \begin{array}{cc}
\\
2 & 4 \\
3 & 7 \\
3 & 3
\end{array}\right) 1
$$

7	0	9	5
2	4	7	6
3	8	3	1

$$
M(2: 3,3: 4)
$$

Zeroing a Subarray

$$
M(2: 3,3: 4)=\operatorname{zeros}(2,2)
$$

7	0	9	5
2	4	7	6
3	8	3	1

Before

7	0	9	5
2	4	0	0
3	8	0	0

After

Example: Create this Matrix

- Goal: Create an m-by-n matrix where every entry is of the form $10^{\star} r+c$ where r and c are the row and column indices, respectively
function $A=$ createExample (m, n) for $r=1$: m
for $c=1: n$

11	12	13	14	15
21	22	23	24	25
31	32	33	34	35

$$
A(r, c)=10^{\star} r+c ;
$$

end
end

Finding the Dimensions of a Matrix

- Matlab provides a function for this: size(M)
- Examples

```
[nr,nc] = size(M) % Both # of rows and # of columns
nr = size(M,1) % # of rows
nc=\operatorname{size}(M,2) % # of columns
```


Pattern for Traversing a Matrix M

```
[ \(n r, n c\) ] = \(\operatorname{size}(M)\);
for \(r=1: n r\)
    for \(c=1: n c\)
        \% Do something with \(M(r, c)\)
        end
end
```


Transpose of a Matrix

- If A is a matrix then A^{\prime} is the transpose of A
- The transpose of a matrix just swaps the rows and the columns
- An item at position (r, c) becomes an item at position (c, r)
- Example: The transpose of [1:3;4:6]

What is [705] ?

A. Error; the transpose of a vector is illegal
B. The same as $[7 ; 0 ; 5$]
C. [507]

What happens when this statement is executed?

$$
[n r n c]=\operatorname{size}\left(\left[\begin{array}{lll}
7 & 0 & 5
\end{array}\right]\right)
$$

A. Error; use length() instead of size() for a vector
B. $n r$ is $3 ; n c$ is 1
C. $n r$ is $1 ; n c$ is 3
D. $n r$ and $n c$ are both 3

What happens when these statements are executed?

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
4 & 4
\end{array}\right] \\
& A=\left[A^{\prime} \text { ones }(2,1)\right] \\
& A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 ; A
\end{array}\right]
\end{aligned}
$$

A. Error in $2^{\text {nd }}$ statement
B. Error in $3^{\text {rd }}$ statement
C. In the end, A is a $3-b y-4$ matrix
D. In the end, A is a 4-by-3 matrix
E. In the end, A is a vector of length 12

What happens when the code is executed?

```
[nr nc] = size(M);
for \(r=1: n r\)
        for \(c=1: n c\)
        \(A(c, r)=M(r, c) ;\)
    end
end
```

A. A is the same as M, but with columns in reverse order
B. A is the same as M, but with rows in reverse order
C. A is the transpose of M
D. A and M are the same

What does this code do?

$$
\begin{aligned}
& {[m n]=\operatorname{size}(M) \text {; }} \\
& \text { for } g=1: m \\
& \text { for } h=1: f \operatorname{loor}(n / 2) \\
& \qquad M(g, h)=M(g, n-h+1) \text {; } \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

A. This code reflects the right half of M onto the left half
B. This code reflects the bottom half of M onto the top half
C. This code leaves the matrix M unchanged
D. This code produces an error message

What does the following code produce?

$$
\begin{aligned}
& M=[705 ; 246 ; 381] \\
& W=[M(1: 2,:) ; M(2: 3,1: 2)]
\end{aligned}
$$

A. W is a $2-$ by -5 matrix
B. W is a 4-by- 2 matrix
C. W is a 4-by- 3 matrix
D. There is an error

Finding the Maximum Value

$$
\begin{aligned}
& m=\max (A) \\
& \text { answer }=\max (m)
\end{aligned}
$$

or you can use iteration

Neighborhood of a Cell

- We define the neighborhood of a cell to be the cell itself and all adjacent cells (including diagonally adjacent)

7	0	7	0	5
2	4	5	2	6
4	6	3	8	1
7	0	5	2	4
3	8	6	2	1

of cell(2,4) neighborhood
neighborhood
cell(5,2)

Min of a Neighborhood

- Goal:

Write a function minInNeighborhood(M, row, col) that reports the minimum value in neighborhood of cell(row, col) in matrix M

- Function header

Function val $=\min$ InNeighborhood(M, row, col) \% Return min in neighborhood of (row, col) in M

Ask Yourself Questions

- Do we know how to solve a similar problem?
- Yes, we already have code to find the min of a matrix
- Can we make a neighborhood into a matrix?
- Yes, Matlab makes it easy to do submatrices
- Neighborhood of M(row, col) is M(row-1:row+1, col-1:col+1)
- What happens near the edges?
- Doesn't work near the edges: we "fall off"
- What can we do to fix up the edges?
- M(max(1,row-1):min(nr,row+1), max(1,col-1):min(nc,col+1))

