

Creating a Matrix: "By Hand"

- Comma or space separates items in same row
- Semicolon ";" indicates a new row
- Example:
$\gg M=[705 ; 246: 381]$
$M=$
$\begin{array}{lll}7 & 0 & 5\end{array}$
$\begin{array}{lll}2 & 0 & 5 \\ 2 & 4 & 6 \\ 3 & 8 & 1\end{array}$
$\begin{array}{lll}3 & 8 & 1\end{array}$

Creating a Matrix: Using a Function

- The vector-creating
functions can also create
matrices
> $M=\operatorname{zeros}(4,3)$
>> $M=\operatorname{ones}(3,5)$
$M=$
$M=$
$\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}$
$\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}$
$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$
$\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1\end{array}$

Subscripting: Entire Row

- A single colon ":" can be used to represent all indices

$$
\gg M=[705: 246 ; 381]
$$

$M=$
$\begin{array}{lll}7 & 0 & 5\end{array}$
$\begin{array}{lll}2 & 4 & 6 \\ 3 & 8 & 1\end{array}$
> $M(2,:)$
ans $=$
$2 \quad 4 \quad 6$

Subscripting: Individual Entry

- Two indices are used to identify the position of a item in a matrix
- $M(r, c)$ refers to the item in row r, column c
- Just like vectors, indices for matrices start at 1
- Example: $M(2,3)$ refers to 6

Subscripting: Entire Row - A single colon ":" can be used to represent all indices			
$\gg M=\left[\begin{array}{lllllllllllll} \\ M=\end{array}\right.$			
70	7		5
24	2		6
38	3	8	1
> M(2, :			
ans =			
246			

$\gg M=\left[\begin{array}{llllllll}7 & 0 & 9 & 5 ; & 2476 ; 3 & 8 & 3 & 1\end{array}\right]$
$M=$
$\begin{array}{llll}7 & 0 & 9 & 5\end{array}$
$\begin{array}{llll}2 & 4 & 7 & 6\end{array}$
$\begin{array}{llll}3 & 8 & 3 & 1\end{array}$
$\gg M(2: 3,3: 4)$
ans =
76
31

7	0	9	5
2	4	7	6
3	8	3	1

$M(2: 3,3: 4)$

Finding the Dimensions of a Matrix

- Matlab provides a function for this: size(M)
- Examples
[$n \mathrm{r}, \mathrm{nc}$] $=\operatorname{size}(M) \quad \%$ Both \# of rows and \# of columns $n r=\operatorname{size}(M, 1) \quad \% \#$ of rows
$n c=\operatorname{size}(M, 2) \quad \% \#$ of columns

Finding the Maximum Value
$m=\max (A)$
answer $=\max (m)$
A:

$m:$ \qquad
answer

