
1

Programming with
Vectors & Strings

Lecture 13 (Mar 4)
CS100M – Spring 2008

Announcements

! Section this week is in the classroom (not the lab)

! Prelim 2 is coming soon!
" Date: Thursday, March 13
" Time: 7:30-9:00 pm

" If you have a conflict, tell us (email Kelly Patwell) today
We accommodate only university-accepted conflicts
Leaving early for spring break doesn't count

Characters ↔ ASCII Code

str = ‘CS100M’; % Vector (1D array) of characters

code = double(str); % Converts string into vector of numbers

s = char(code); % Converts vector of numbers into a string

Character Arithmetic
! You can do “math” with characters

‘d’ – ‘a’ % Produces 3
‘9’ – ‘8’ % Produces 1
‘a’ < ‘d’ % Produces 1 (= true)
‘d’ < ‘b’ % Produces 0 (= false)
‘Z’ < ‘b’ % Produces 1 (= true)

% Because 90, the ASCII code for ‘Z’,
% is less than 98, the ASCII code for ‘b’

‘a’ + 2 % Produces 99
char(‘a’+2) % Produces ‘c’

Example: toUpper
! Goal: Write toUpper(), our own version of Matlab’s upper(), a

function to convert a string to all uppercase
" We want to do this without using Matlab’s function upper()

! Function header
function str = toUpper(str)
% Post: Convert string so all letters are upper case
% Pre: Input is a string

" Post = What is supposed to have happened when function is done
(i.e., what the function does)

" Pre = What assumptions are being made when function starts

Converting to Uppercase
! Idea: ‘A’ – ‘a’ has the same value

as ‘B’ – ‘b’ which has the same
value as ‘C’ – ‘c’, etc.

" All we have to do is add the
right number to a lowercase
letter and we’ll have the
equivalent uppercase letter

>> char('a' + ('A' - 'a'))

ans =
A

>> char('e' + ('A' - 'a'))

ans =
E

2

toUpper.m
function str = toUpper(str)
% Post: Convert string so all letters are upper case
% Pre: Input is a string
% This function is not really necessary since upper()
% does the same thing

diff = 'A' - 'a';
for k = 1:length(str) % Check each letter

if 'a' <= str(k) && str(k) <= 'z'
str(k) = char(str(k) + diff);

end
end

Example: Capitalize First Letters

! Goal:
" Write a function to capitalize just the first letter of

each word in a string
" Assume the string consists entirely of letters and spaces

! Function header
function result = capitalize(str)
% Post: Convert string so each word has just first letter capitalized
% Pre: Input string consists entirely of letters & spaces

What’s Wrong with This Version?
function str = capitalize(str)
% Post: Convert string so each word has just first letter capitalized
% Pre: Input string consists entirely of letters & spaces

str = lower(str); % Make sure all letters are lowercase
for k = 1:length(str) % Check each letter

if isspace(str(k-1)) && isletter(str(k))
str(k) = upper(str(k));

end
end >> capitalize('hello there what is this')

??? Attempted to access str(0); index must be a positive integer or logical.

Error in ==> capitalize at 7

if isspace(str(k-1)) && isletter(str(k))

capitalize.m
function str = capitalize(str)
% Post: Convert string so each word has just first letter capitalized
% Pre: Input string consists entirely of letters & spaces

str = lower(str); % Make sure all letters are lowercase
if isletter(str(1)) % Check for an initial letter

str(1) = upper(str(1));
end
for k = 2:length(str) % Check each remaining letter

if isspace(str(k-1)) && isletter(str(k))
str(k) = upper(str(k));

end
end

>> capitalize('hello there what is this')

ans =

Hello There What Is This

Extracting Substrings

s = ‘abcdef’;

x = s(3) % x = ‘c’
x = s(2:4) % x = ‘bcd’
x = s(length(s)) % x = ‘f’

Colon Notation

s(:)

Start Location End Location

3

Using the Word “end”

! In Matlab, the work “end” is overloaded
" Used to terminate an if-statement
" Used to terminate a for-statement
" Used to terminate a while-statement
" Used to represent the last index of a vector

s = ‘abcdef’;

x = s(end) % x = ‘f’
y = s(3:end) % y = ‘cdef’

Replacing Substrings

s = ‘abcde’;

s(2:4) = ‘xyz’ % s = ‘axyze’

s = ‘abcde’;

s(2:4) = ‘wxyz’ % Error

Dimensions must match

What is the final value of s?

s = ‘abcde’;
for k=1:3

s = [s(4:5) s(1:3)];
end

A. abcde
B. bcdea
C. eabcd
D. deabc

function y = myF(x)
t = 2 + x;
y = 2 * t;

What gets printed?

t = 5;
b = myF(t);
fprintf(‘%d’, t);

A: 7
B: 6
C: 5
D: ERROR (t is undefined)

What happens when these statements are
executed?

A = [3 4]
A = [A’ ones(2,1)]
A = [A A A]

A. Error in 2nd statement
B. Error in 3rd statement
C. In the end, A is a 2-by-6 matrix
D. In the end, A is a 6-by-2 matrix
E. In the end, A is a vector of length 3

How many X’s are printed?

for k = 9:1
disp(‘X’)

end

A. 10
B. 9
C. 8
D. None; an error is reported
E. None; no error is reported

4

Many Operators Work on Entire Vectors

! Most Matlab operators are
designed to work on entire
vectors or entire matrices

" This includes arithmetic,
relational, and logical
operators

" Also includes most built-in
functions (e.g., sin, cos,
mod, floor, exp, log, etc.)

! Code that operates on
entire vectors (or matrices)
instead of on scalars is
sometimes called vectorized
code

! Examples
x = [10 20 30];
y = 1:3;
z = [2 1 2];

% Addition, subtraction
x + y % [11 22 33]
x – y % [9 18 27]

% Mult, division, power
% Must include the DOT “.”
x .* y % [10 40 90]
x ./ y % [10 10 10]
x .^ z % [100 20 900]

Dot-Operators

! Matlab is especially set up for Linear Algebra
" Thus, “*”, “/”, and “^” correspond to matrix operations

! Term-by-term operators use “.*”, “./”, and “.^”
" Matlab documentation calls these “array operations” (as

opposed to “matrix operations”)

! Why doesn’t Matlab include operators “.+” and “.-”?

Shapes Must Match
! Examples

a = [4 8 12]
b = [1; 2; 4] % Column vector

a + b % Error
a + b’ % [5 10 16]

a ./ b % Error
a’ ./ b % [4; 4; 3]

! Exception to shape matching
" Scalars follow special rules
" “A scalar can operate into

anything”

! Scalar examples
a + 1 % [5 9 13]
10 + a % [14 18 22]
2 .* a % [8 16 24]
a ./ 2 % [2 4 6]
24 ./ a % [6 3 2]
a .^ 2 % [16 64 144]

Example: Pair-Sums
! Given a vector, report the

vector of pair-sums (i.e., the
sums of adjacent items)

" Example: The pair-sum for
[7 0 5 2] is [7 5 7]

! Function header
function s = pairSum(v)
% Return vector v’s pair sums

! Iterative code
function s = pairSum(v)
% Return vector v’s pair sums
s = [];
for k = 1: length(v)-1

s(k) = v(k) + v(k+1);
end

! Vectorized code
function s = pairSum(v)
% Return vector v’s pair sums
s = v(1:end-1) + v(2:end);

Playing with Polygons

Playing with Functions that use Vectors

A Polygon

(x1,y1)

(x5,y5)

(x3,y3)

(x4,y4)

(x2,y2)
(x, y)
coordinates
are stored
in vectors x
and y

5

Operation 1: Centralize

! Move a polygon so that its center (the centroid of
its vertices) is at the origin

Before

After

Centralize.m

function [xNew,yNew] = Centralize(x,y)

n = length(x);

% Compute the centroid...
xBar = sum(x)/n; yBar = sum(y)/n;

% Translate the polygon...
xNew = x-xBar; yNew = y-yBar;

Operation 2: Normalize

! Shrink (or enlarge) the polygon so that the vertex
furthest from the origin is on the unit circle

Before

After

Normalize.m
function [xNew,yNew] = Normalize(x,y)

% Max distance to origin...
d = max(sqrt(x.^2 + y.^2));

% Normalize so furthest vertex is on the unit circle..
xNew = x/d; yNew = y/d;

Operation 3: Smooth

! Create a new polygon by connecting the midpoints
of the polygon edges

Before

After

Idea for Smooth

function [xNew,yNew] = Smooth(x,y)
n = length(x);
xNew = zeros(n,1);
yNew = zeros(n,1);
for i=1:n

Compute the midpoint of ith edge
Store in xNew(i) and yNew(i)

end

6

Computing the Midpoint

(x1,y1)

(x5,y5)

(x3,y3)

(x4,y4)

(x2,y2)

xNew(1) = (x(1)+x(2))/2

yNew(1) = (y(1)+y(2))/2

Code for Smooth

for k=1:n
xNew(k) = (x(k) + x(k+1))/2;
yNew(k) = (y(k) + y(k+1))/2;

end

! Results in a subscript out of bounds error
when k is n

Smooth.m
function [xNew,yNew] = Smooth(x,y)

n = length(x); xNew = zeros(n,1); yNew = zeros(n,1);
for i=1:n-1

xNew(i) = (x(i) + x(i+1))/2;
yNew(i) = (y(i) + y(i+1))/2;

end
xNew(n) = (x(n)+x(1))/2;
yNew(n) = (y(n)+y(1))/2;

Proposed Simulation

Create a polygon with randomly located vertices

Repeat:
Centralize
Normalize
Smooth

