Character Arithmetic

- You can do "math" with characters
'f'- 'a' or 'Produces
'9'-8' \% Produces 1
' a '<'d' \quad \% Produces 1 (= true)
' d '<'b' \quad Produces $0(=$ fatse)
'Z'<'b' \quad Produces 1 (=true)
\% Because 90 , the ASCII code for ' Z ',
\% is less than 98, the ASCII code for 'b'
$a^{\prime}+2$
\% Produces 99
char ('a' +2)
\% Produces 'c'

Extracting Substrings
$s='^{\prime} b c d e f$ ';
$\chi=s(3)$
$\% x={ }^{c}$ '
$\chi=s(2: 4)$
$\% x=16 c d$ '
$x=s($ length(s))
$\% x=$ f

Ulsing the Word "end"

- In Matlab, the work "end" is overloaded
- Ulsed to terminate an if-statement
- Ulsed to terminate a for-statement
- Ulsed to terminate a while-statement
- Ulsed to represent the last index of a vector
$s=' a b c d e f$;
$x=s(e n d)$
$\% x=$ 年,
$y=s(3: e n d)$
$\% y=' c d e f$ '

Replacing Substrings
$s=' a b c d e$ ';
$s(2: 4)={ }^{\prime} x y z{ }^{\prime} \quad \% s={ }^{\prime} a x y z e{ }^{\prime}$
$s=' a b c d e$ ';
$s(2: 4)={ }^{\prime} w x y z ' \quad$ E Error

- Dimensions must match

Dot-Operators

- Matlab is especially set up for Line ar Alge bra
- Thus, "*", "/", and "A" correspond to matrix operations
- Term-by-term operators use ".*", "./", and "."
- Matlab documentation calls these "array operations" (as opposed to "matrix operations")
- Why doesn't Matlab include operators ".+" and ". "?

Shapes Must Match

- Examples

$$
\begin{aligned}
& a=[4812 \mid \\
& b=[1 ; 2 ; 4] \quad \% \text { Column vector }
\end{aligned}
$$

- Exception to shape matching
- Scalars follow special rules
- "A scalar can operate into
anything"

$$
24 . / a \quad \%\left[\begin{array}{lll}
6 & 3 & 2
\end{array}\right]
$$

$$
a \wedge 2 \quad \%[1664144]
$$

$$
a+6 \quad \text { Efror } \quad \text { Scalar examples }
$$

$$
a+b^{\prime} \quad \%\left[\begin{array}{llll}
5 & 10 & 16
\end{array}\right] \quad a+1 \quad \%\left[\begin{array}{lll}
5 & 9 & 13
\end{array}\right]
$$

$$
\begin{array}{llll}
& & \text { \% Error } & \left.\begin{array}{lll}
10+a & \text { \% } & {\left[\begin{array}{lll}
14 & 18 & 2
\end{array}\right]}
\end{array}\right] \\
2 . * a & \% & {\left[\begin{array}{lll}
8 & 16 & 24
\end{array}\right]}
\end{array}
$$

$$
a^{\prime} .6 \quad \%[4 ; 4 ; 3] \quad a . / 2 \quad \%\left[\begin{array}{lll}
2 & 4 & 6]
\end{array}\right.
$$

Relational Operators

- Comparison operators (e.g., " $<$ ", " $>$ ", " ==", etc.) also operate term-by-term, creating arrays of boolean values
- Examples
$a=\left[\begin{array}{llllll}7 & 0 & 5 & 2 & 4 & 6\end{array}\right]$
$6=1: 6$
$a<6 \quad \%\left[\begin{array}{lllll}0 & 1 & 0 & 1 & 1\end{array}\right]$
$a=6 \quad \% \quad\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

Operation 1: Centralize

- Move a polygon so that its center (the centroid of its vertices) is at the origin

Operation 2: Normalize

- Shrink (or enlarge) the polygon so that the vertex furthest from the origin is on the unit circle

Operation 3: Smootf

- Create a new polygon by connecting the midpoints of the polygon edges

Proposed Simulation

Create a polygon with randomly located vertices
Repeat:
Centralize
Normalize

Smooth

Random Walk Simulation

Start at the middle tile

Repeat until boundary reached:

Pick a compass heading $(\mathcal{N}, \mathcal{E}, \mathcal{S}, \mathcal{W})$ at random

Move one tile in that direction

