
1

Character Arithmetic
! You can do “math” with characters

‘d’ – ‘a’ % Produces 3
‘9’ – ‘8’ % Produces 1
‘a’ < ‘d’ % Produces 1 (= true)
‘d’ < ‘b’ % Produces 0 (= false)
‘Z’ < ‘b’ % Produces 1 (= true)

% Because 90, the ASCII code for ‘Z’,
% is less than 98, the ASCII code for ‘b’

‘a’ + 2 % Produces 99
char(‘a’+2) % Produces ‘c’

Extracting Substrings

s = ‘abcdef’;

x = s(3) % x = ‘c’
x = s(2:4) % x = ‘bcd’
x = s(length(s)) % x = ‘f’

Using the Word “end”

! In Matlab, the work “end” is overloaded
" Used to terminate an if-statement
" Used to terminate a for-statement
" Used to terminate a while-statement
" Used to represent the last index of a vector

s = ‘abcdef’;

x = s(end) % x = ‘f’
y = s(3:end) % y = ‘cdef’

Replacing Substrings

s = ‘abcde’;

s(2:4) = ‘xyz’ % s = ‘axyze’

s = ‘abcde’;

s(2:4) = ‘wxyz’ % Error

Dimensions must match

Dot-Operators

! Matlab is especially set up for Linear Algebra
" Thus, “*”, “/”, and “^” correspond to matrix operations

! Term-by-term operators use “.*”, “./”, and “.^”
" Matlab documentation calls these “array operations” (as

opposed to “matrix operations”)

! Why doesn’t Matlab include operators “.+” and “.-”?

Shapes Must Match
! Examples

a = [4 8 12]
b = [1; 2; 4] % Column vector

a + b % Error
a + b’ % [5 10 16]

a ./ b % Error
a’ ./ b % [4; 4; 3]

! Exception to shape matching
" Scalars follow special rules
" “A scalar can operate into

anything”

! Scalar examples
a + 1 % [5 9 13]
10 + a % [14 18 22]
2 .* a % [8 16 24]
a ./ 2 % [2 4 6]
24 ./ a % [6 3 2]
a .^ 2 % [16 64 144]

2

Relational Operators

! Comparison operators (e.g., “<”, “>”, “==”, etc.) also
operate term-by-term, creating arrays of boolean
values

! Examples
a = [7 0 5 2 4 6]
b = 1:6
a < b % [0 1 0 1 1 0]
a == b % [0 0 0 0 0 1]

Operation 1: Centralize

! Move a polygon so that its center (the centroid of
its vertices) is at the origin

Before

After

Operation 2: Normalize

! Shrink (or enlarge) the polygon so that the vertex
furthest from the origin is on the unit circle

Before

After

Operation 3: Smooth

! Create a new polygon by connecting the midpoints
of the polygon edges

Before

After

Proposed Simulation

Create a polygon with randomly located vertices

Repeat:
Centralize
Normalize
Smooth

Random Walk Simulation

Start at the middle tile

Repeat until boundary reached:

Pick a compass heading
(N, E, S, W) at random

Move one tile in that
direction

