
1

More on Vectors
&

Strings

Lecture 12 (Feb 28)
CS100M – Spring 2008

Topics for Today

Vector-related functions
length, zeros, ones, std
Revisit: rand, randn, max

String related functions
isletter, isspace, lower, upper, ischar

Row and column vectors

Strings

Special Functions for Creating Vectors

Some vectors are used so often that there are
special functions for creating them

zeros(1, 5) % A vector of length 5 holding all zeros

ones(1, 3) % A vector of length 3 holding all ones

rand(1, 4) % A vector of length 4 holding random numbers

0 0 0 0 0

1 1 1

0.9501 0.2311 0.6068 0.4860

Why the extra arguments?

Matlab (= Matrix Laboratory) uses matrices (2D
arrays) as its default

Thus, zeros(3, 4) produces a
3-by-4 matrix of zeros

zeros(1, 5) produces a 1-by-5 matrix (i.e., a
single row of a matrix; also called a row vector)

zeros(5, 1) produces a 5-by-1 matrix (i.e., a
single column of a matrix; also called
a column vector)

0 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0

0

0

0

0

Row and Column Vectors

>> v = [1 2 3]

v =
1 2 3

>> v = [1 ; 2 ; 3]

v =
1
2
3

Note the
semicolons

Normal Distribution with
Zero Mean and Unit STD

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8
x 10

4

Distribution of randn(1,1000000)

2

Sanity Check

>> n = 1000000;
>> x = randn(1,n);

>> ave = sum(x)/n
ave =

-0.0017

>> standDev = std(x)
standDev =

0.9989

Most of the
Matlab built-
in functions
can work on
vectors

Length
>> v = randn(1, 5);
>> n = length(v)

n =
5

>> u = randn(5, 1);
>> n = length(u)

n =
5

The length
function doesn’t
care about row or
column orientation

Appending to a Vector
Appending to a row vector

>> x = [11, 22]
x =

11 22

>> x = [x 33]
x =

11 22 33

Appending to a column vector

>> x = [11 ; 22]
x =

11
22

>> x = [x ; 33]
x =

11
22
33

Note the
semicolons

Concatenating Vectors
Concatenating row vectors

>> x = [11 22]
x =

11 22

>> y = [33 44 55]
y =

33 44 55

>> z = [x y]
z =

11 22 33 44 55

Concatenating column vectors

>> x = [11;22;33];
>> y = [44 ; 55];
>> z = [x ; y]

z =
11
22
33
44
55

Note the
semicolons

An Application

Plot sine across [0,4*pi] and use the fact that it
has period 2pi

x = linspace(0,2*pi,100);
y = sin(x);
x = [x x+2*pi];
y = [y y];
plot(x,y)

0 2 4 6 8 10 12 14
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

The Empty Vector

x = [];
for k=1:50

if floor(sqrt(k)) == sqrt(k)
x = [x; k];

end
end
x

x =

1

4

9

16

25

36

49

3

Vector Mistakes

Mistake: Dimension Mismatch

>> x = [1 2]
x =

1 2

>> y = [3 ; 4]
y =

3
4

>> z = x + y
??? Error using ==> plus
Matrix dimensions must agree.

Can’t add a
row-vector to a
column-vector!

Mistake: Wanted Vector, Got Matrix

>> x = randn(3)

x =

-0.1867 2.1832 1.0668
0.7258 -0.1364 0.0593
-0.5883 0.1139 -0.0956

Probably meant
randn(1,3) or
randn(3,1)

Mistake: Subscript Out of Range

>> x = [11 22 33]

x =

11 22 33

>> b = x(4)
??? Index exceeds matrix dimensions.

But This is OK…

>> x = [11 22 33]
x =

11 22 33

>> x(4) = 44
x =

11 22 33 44

>> x(7) = 77
x =

11 22 33 44 0 0 77

This is
OK, too!

Mistake: Forgot the Semicolon

x = randn(1000000, 1)

Remember!: ctrl-C

4

Will this cause a subscript out of
bounds error?

x = zeros(1,1);
for k=1:3

x = [x x];
end
y = x(7)

No!

How x changes:
After 1st pass: [0 0]
After 2nd pass: [0 0 0 0]
After 3rd pass: [0 0 0 0 0 0 0 0]
So y = x(7) makes sense.

Another Shortcut for Creating Vectors

We were already creating vectors when we were
using for-loops

“:” notation
vec = 1:7; % [1 2 3 4 5 6 7]
vec = 10: -2: 0 % [10 8 6 4 2 0]

FYI
The for-loop actually converts the “:” notation into a
vector before it executes
A for-loop will work with any vector!
(e.g., for k = [2 3 5 7 11 13 17 19])

Matlab Strings

You’ve been using strings

n = input(‘Next number: ’);

fprintf(‘The answer is %d.’, answer);

title(‘The Sine Function’)

‘Next number: ’ and
‘The answer is %d.’ and
‘The Sine Function’ are all strings

Single Quotes

Anything enclosed in single quotes is a string

‘100’ is a string (i.e., a character vector) of length 3
100 is a numeric value

‘pi’ is a string of length 2
pi is a predefined constant (= 3.14159…)

‘x’ is a character (also a string of length 1)
x is a variable name

A String is a Vector of Characters

A string is made up of individual characters

The string ‘CS100M rules’ consists of 12 characters
(8 letters, 3 digits, and 1 space)

In Matlab, a string is a vector of characters

Since a string is a vector, it uses the same indexing
scheme as any other vector

Strings as Vectors

Vectors
Indexing

v = [7 0 5];
x = v(3); % x is 5
v(1) = 1; % v is [1 0 5]

“:” notation
v = 2:5; % v is [2 3 4 5]

Appending
v = [7 0 5];
v(4) = 2; % v is [7 0 5 2]

Concatenation
v = [v [4 6]]

% v is [7 0 5 2 4 6]

Strings
Indexing

s = ‘hello’;
c = s(2); % c is ‘e’
s(1) = ‘J’; % s is ‘Jello’

“:” notation
s = ‘a’ : ‘g’; % s is ‘abcdefg’

Appending
s = ‘duck’;
s(5) = ‘s’; % s is ‘ducks’

Concatenation
s = [s ‘ quack’]

% s is ‘ducks quack’

5

Some Useful String Functions

str = ‘CS100M rules’;

isletter(str) % [1 1 0 0 0 1 0 1 1 1 1 1]
isspace(str) % [0 0 0 0 0 0 1 0 0 0 0 0]

s = lower(str); % s is ‘cs100m rules’
s = upper(str); % s is ‘CS100M RULES’

ischar(str); % Is str a char array? 1 (= true)

ASCII
(American Standard Code for Information Interchange)

ASCII Code Character

48 ‘0’
49 ‘1’
50 ‘2’
51 ‘3’
… …
65 ‘A’
66 ‘B’
67 ‘C’
… …
90 ‘Z’
… …

ASCII Code Character

97 ‘a’
98 ‘b’
99 ‘c’
… …
122 ‘z’
… …
127 DEL

Characters ↔ ASCII Code

str = ‘CS100M’; % Vector (1D array) of characters

code = double(str); % Converts each character to a number;
% code is a standard Matlab vector

s = char(code); % Converts a vector of numbers into
% a string (i.e., a vector of characters)

Character Arithmetic
You can do “math” with characters

‘d’ – ‘a’ % Produces 3
‘9’ – ‘8’ % Produces 1
‘a’ < ‘d’ % Produces 1 (= true)
‘d’ < ‘b’ % Produces 0 (= false)
‘Z’ < ‘b’ % Produces 1 (= true)

% Because 90, the ASCII code for ‘Z’,
% is less than 98, the ASCII code for ‘b’

‘a’ + 2 % Produces 99
char(‘a’+2) % Produces ‘c’

Example: toUpper
Goal: Write toUpper(), our own version of Matlab’s upper(), a
function to convert a string to all uppercase

We want to do this without using Matlab’s function upper()

Function header
function str = toUpper(str)
% Post: Convert string so all letters are upper case
% Pre: Input is a string

Idea: Note that ‘a’ – ‘A’ has the same value as
‘b’ – ‘B’ which has the same value as ‘c’ – ‘C’, etc.

All we have to do is subtract the right number from a lowercase
letter and we’ll have the equivalent uppercase letter

Example: Capitalize First Letters

Goal:
Write a function to capitalize just the first letter of
each word in a string
Assume the string consists entirely of letters and spaces

Function header
function result = capitalize(str)
% Post: Convert string so each word has just first letter capitalized
% Pre: Input string consists entirely of letters & spaces

Post = What is supposed to have happened when function is
done (i.e., what the function does)

Pre = What assumptions are being made when function starts

