
1

Special Functions for Creating Vectors

Some vectors are used so often that there are
special functions for creating them

zeros(1, 5) % A vector of length 5 holding all zeros

ones(1, 3) % A vector of length 3 holding all ones

rand(1, 4) % A vector of length 4 holding random numbers

0 0 0 0 0

1 1 1

0.9501 0.2311 0.6068 0.4860

Row and Column Vectors

>> v = [1 2 3]

v =
1 2 3

>> v = [1 ; 2 ; 3]

v =
1
2
3

Note the
semicolons

Length
>> v = randn(1, 5);
>> n = length(v)

n =
5

>> u = randn(5, 1);
>> n = length(u)

n =
5

The length
function doesn’t
care about row or
column orientation

Appending to a Vector
Appending to a row vector

>> x = [11, 22]
x =

11 22

>> x = [x 33]
x =

11 22 33

Appending to a column vector

>> x = [11 ; 22]
x =

11
22

>> x = [x ; 33]
x =

11
22
33

Note the
semicolons

Concatenating Vectors
Concatenating row vectors

>> x = [11 22]
x =

11 22

>> y = [33 44 55]
y =

33 44 55

>> z = [x y]
z =

11 22 33 44 55

Concatenating column vectors

>> x = [11;22;33];
>> y = [44 ; 55];
>> z = [x ; y]

z =
11
22
33
44
55

Note the
semicolons

The Empty Vector

x = [];
for k=1:50

if floor(sqrt(k)) == sqrt(k)
x = [x; k];

end
end
x

x =

1

4

9

16

25

36

49

2

Another Shortcut for Creating Vectors

We were already creating vectors when we were
using for-loops

“:” notation
vec = 1:7; % [1 2 3 4 5 6 7]
vec = 10: -2: 0 % [10 8 6 4 2 0]

FYI
The for-loop actually converts the “:” notation into a
vector before it executes
A for-loop will work with any vector!
(e.g., for k = [2 3 5 7 11 13 17 19])

A String is a Vector of Characters

A string is made up of individual characters

The string ‘CS100M rules’ consists of 12 characters
(8 letters, 3 digits, and 1 space)

In Matlab, a string is a vector of characters

Since a string is a vector, it uses the same indexing
scheme as any other vector

Strings as Vectors

Vectors
Indexing

v = [7 0 5];
x = v(3); % x is 5
v(1) = 1; % v is [1 0 5]

“:” notation
v = 2:5; % v is [2 3 4 5]

Appending
v = [7 0 5];
v(4) = 2; % v is [7 0 5 2]

Concatenation
v = [v [4 6]]

% v is [7 0 5 2 4 6]

Strings
Indexing

s = ‘hello’;
c = s(2); % c is ‘e’
s(1) = ‘J’; % s is ‘Jello’

“:” notation
s = ‘a’ : ‘g’; % s is ‘abcdefg’

Appending
s = ‘duck’;
s(5) = ‘s’; % s is ‘ducks’

Concatenation
s = [s ‘ quack’]

% s is ‘ducks quack’

Some Useful String Functions

str = ‘CS100M rules’;

isletter(str) % [1 1 0 0 0 1 0 1 1 1 1 1]
isspace(str) % [0 0 0 0 0 0 1 0 0 0 0 0]

s = lower(str); % s is ‘cs100m rules’
s = upper(str); % s is ‘CS100M RULES’

ischar(str); % Is str a char array? 1 (= true)

Character Arithmetic
You can do “math” with characters

‘d’ – ‘a’ % Produces 3
‘9’ – ‘8’ % Produces 1
‘a’ < ‘d’ % Produces 1 (= true)
‘d’ < ‘b’ % Produces 0 (= false)
‘Z’ < ‘b’ % Produces 1 (= true)

% Because 90, the ASCII code for ‘Z’,
% is less than 98, the ASCII code for ‘b’

‘a’ + 2 % Produces 99
char(‘a’+2) % Produces ‘c’

Example: toUpper
Goal: Write toUpper(), our own version of Matlab’s upper(), a
function to convert a string to all uppercase

We want to do this without using Matlab’s function upper()

Function header
function str = toUpper(str)
% Post: Convert string so all letters are upper case
% Pre: Input is a string

Idea: Note that ‘a’ – ‘A’ has the same value as
‘b’ – ‘B’ which has the same value as ‘c’ – ‘C’, etc.

All we have to do is subtract the right number from a lowercase
letter and we’ll have the equivalent uppercase letter

