CS100M Section Exercise 5

1. Write a function $\operatorname{aprime}(\mathbf{m})$ that has an input parameter \mathbf{m}. Function aprime(\mathbf{m}) returns 1 if \mathbf{m} is prime, and 0 otherwise. Remember to write a concise comment to describe the function, including its parameters under the function header.
2. A twin prime is a pair of primes such that if p is a prime, $p+2$ is also a prime. The larger prime in the pair is called the big prime, while the smaller prime is called the little prime. For example, in the twin prime pair $(3,5), 5$ is the big prime while 3 is the little prime. Write a function lastTwinPair(n) that will, given a number \mathbf{n} greater than or equal to 5 , return the last (largest) twin prime pair smaller than or equal to \mathbf{n}. Use function aprime from the previous question! This function returns two values. Call them littlep and bigp.
3. [Modified from FA07 Prelim 1] The value of $\pi / 8$ can be approximated by the series

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots
$$

Let the sum of the first n terms be T_{n}. As n increases one expects the ratio $\frac{T_{n}}{T_{n+1}}$ to approach 1 . Write a script to find the smallest n such that the ratio $\frac{T_{n}}{T_{n+1}}>.9999$. Display n and T_{n}. Do not use arrays. Hint: You need to keep track of a current sum and the next sum in the loop.
4. For each of the following sub-problems, complete the program so that it produces the desired result. You should not modify the given code in any way-only fill in the blanks that are provided. In every case you will need to use for-loops with an "increment" that is not one.
(a) The following program reads an integer k, and outputs all the multiples of k up to 1000 .

```
k = input('Please enter a positive integer smaller than 1000: ');
for j =
    fprintf(%%d ', j);
end
fprintf('\n');
```

(b) The following program reads in a real number x and an integer N, and computes the sum $\sum_{k=0}^{N} \frac{(-1)^{k} x^{2 k}}{(2 k)!}$ to the first N terms. (This sum converges to $\cos (x)$ as $N \rightarrow \infty$.)

```
x = input('Please input a real number between 0 and pi/2: ');
N = input('Please input a positive integer: ');
sum = 0;
for j =
    sum = sum + (-1)^(j/2) * x^j / factorial(j);
end
fprintf('The sum of the first %d terms is %12.8f\n', N, sum);
```

(c) The following does the same thing as in part (b), but this time we are not allowed to use exponentiation and the factorial function, and must compute these explicitly.

```
x = input('Please input a real number between 0 and pi/2: ');
N = input('Please input a positive integer: ');
sum = 1; % Explicitly assign the first term (when j=0)
sign = 1; % The sign of a term, either 1 or -1
jfact = 1; % Current value of j!
xtoj = 1; % Current value of x^j
for j =
```



```
    jfact = _----------------------------------
    xtoj = ----------------------------------
    sum = _-_---------------------------------------------
end
fprintf('The sum of the first %d terms is %12.8f\n', N, sum);
```

