CS100M Section Exercise 3

1 Which quadrant? (re-visited)

[Last week's challenge question] Write a script using nested conditional statements without elseif to determine in which quadrant a user-input value of A degrees belongs. Assume that the user may enter any non-negative number. For example, 725° is the same, and should be treated, as 5°. (Hint: the function rem that you saw last week might be useful.) To avoid ambiguity, we use the following convention:

$$
\text { Quadrant is }\left\{\begin{array}{lll}
1 & \text { if } & 0 \leq A<90 \\
2 & \text { if } & 90 \leq A<180 \\
3 & \text { if } & 180 \leq A<270 \\
4 & \text { if } & 270 \leq A<360
\end{array}\right.
$$

2 Approximate π

[Modified from FVL Exercise P2.1.5] For large n,

$$
\begin{aligned}
& T_{n}=1+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}=\sum_{k=1}^{n} \frac{1}{k^{2}} \approx \frac{\pi^{2}}{6} \\
& R_{n}=1-\frac{1}{3}+\cdots-\frac{(-1)^{n+1}}{2 n-1}=\sum_{k=1}^{n} \frac{(-1)^{k+1}}{2 k-1} \approx \frac{\pi}{4}
\end{aligned}
$$

giving two different ways to estimate π :

$$
\begin{aligned}
\tau_{n} & =\sqrt{6 T_{n}} \\
\rho_{n} & =4 R_{n}
\end{aligned}
$$

Write a script that displays the value of $\left|\pi-\rho_{n}\right|$ and $\left|\pi-\tau_{n}\right|$ for $n=100: 100: 1000$ in one table.

3 Divisors

Write a script to print all the numbers between 1 and n, exclusive, that divide n (without a remainder using integer division). n is a user input positive integer. (Hint: Remember function rem?)

Optional Challenge Question

Refer to Question 3 and write a script to print the prime numbers that divide n. Do not use any built-in functions other than rem.

