
CS100M Section Exercise 13

1 Merge Sort

The code for mergeSort and the function header for merge are shown below. Trace the execution of the script

a= [4 1 6 3 2 9 5 7 6 0];
b= mergeSort(a);

For each call of the mergeSort and merge, write down the arguments that are passed to the function and the
values that are returned. The code below displays the values in vectors y1 and y2 and they are the values
returned by specific calls to mergeSort. Notice that multiple instances of the same function may be open at
one time—which function has this behavior, mergeSort or merge? Ask your section instructor if you have any
questions!

function y = mergeSort(x)

% x is a vector.

% y is a vector consisting of the values in x sorted from

% smallest to largest.

n = length(x);

if n==1

y = x;

else

m = floor(n/2);

% Sort the first half..

y1 = mergeSort(x(1:m)) % values displayed are the values returned by this call of mergeSort

% Sort the second half...

y2 = mergeSort(x(m+1:n)) % values displayed are the values returned by this call of mergeSort

% Merge...

y = merge(y1,y2) % values displayed are the values returned by this call of merge

end

function z = merge(x,y)

% x is a row n-vector with x(1) <= x(2) <= ... <= x(n)

% y is a row m-vector with y(1) <= y(2) <= ... <= y(m)

% z is a row (m+n)-vector comprised of all the values in x and

% y and sorted so that z(1) <= ... <= z(m+n)

n = length(x); m = length(y); z = zeros(1,n+m);

ix = 1; % The index of the next x-value to select.

iy = 1; % The index of the next y-value to select.

for iz=1:(n+m)

% Deteremin the iz-th value for the merged array...

if ix > n

% All done with x-values. Select the next y-value.

z(iz) = y(iy); iy = iy+1;

elseif iy>m

% All done with y-values. Select the next x-value.

z(iz) = x(ix); ix = ix + 1;

elseif x(ix) <= y(iy)

% The next x-value is less than or equal to the next y-value

z(iz) = x(ix); ix = ix + 1;

else

% The next y-value is less than the next x-value

z(iz) = y(iy); iy = iy + 1;

end

end

1



2 Efficient calculation of xn where n is large

If you cannot use Matlab’s power operator ^ how would you calculate x to the n-th power? One way is to use
iteration—a loop that executes n − 1 times. Another strategy is recursion—repeated squaring in this case. The
idea is illustrated with the following schematic that shows how to compute x21:

x21 = (x10)2 · x

- x10 = (x5)2

- x5 = (x2)2 · x

- x2 = (x)2

The recursive definition behind the scenes is given by

f(x, n) =





1 if n = 0

f(x, n/2) · f(x, n/2) if n > 0 and n is even

f(x, (n − 1)/2) · f(x, (n − 1)/2) · x if n > 0 and n is odd

.

Write the following function based on the recursive strategy. Do not use loops.

function y = Power(x, n)
% y = x^n where n is an integer >=0

2


