CS100M Lab Exercise 8

1 Determinant of a 3×3 matrix

Write a function myDeterminant (x), where x is a 3×3 matrix. Use the following formula:

$$
\operatorname{det}\left(\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\right)=a \operatorname{det}\left(\left(\begin{array}{cc}
e & f \\
h & i
\end{array}\right)\right)-b \operatorname{det}\left(\left(\begin{array}{ll}
d & f \\
g & i
\end{array}\right)\right)+c \operatorname{det}\left(\left(\begin{array}{ll}
d & e \\
g & h
\end{array}\right)\right)
$$

You may use the built-in function det to find the determinants of 2×2 matrices. For example, det (m) returns the determinant of 2×2 matrix m . Recall that you can construct a matrix by puting two row vectors one below the other or two column vectors side by side.

2 Find a value in a matrix

Write the following function:

```
function [r, c] = findInMatrix(n,M)
% Find all occurrences of the number n in matrix M.
% r and c are column vectors of row and column numbers such that
% M(r(k),c(k)) is equal to n.
% If n is not found in M, r and c are empty vectors.
```

Do not use the built-in function find.

Note: The next two questions require that you design solutions. Instead of giving you the specifications of a function, we are asking you to design a complete solution: you decide what functions and/or scripts are necessary and implement those functions/scripts. Take some time to do the planning-don't jump immediately to coding.

3 Random walk

A random walk that starts from the center of a 21×21 grid ends when a boundary is reached. Which "square" or grid point is visited most often?

4 Bounded random walk (do this at home)

In a bounded random walk, a set number of steps are taken within a bounded area. For example, when the right boundary (excluding the corners) is reached, the next step can go left, up, or down only. Similarly, when a corner is reached, the next steps can be in two directions only. For a 100 -step bounded random walk in a 21×21 grid, which "square" is visited most often?

Please delete your files from the computer before you leave the lab.

