CS100M Lab Exercise 14

Writing efficient code

1. Download the script LargestTriangle from the Section Exercises page. The script (also shown below) is a first attempt at finding the largest triangle that can be formed from n points on a unit circle. Add code (tic, toc) to the script to determine how long it takes to find the answer for $n=100,150,200$. Store the results (time) in vector t 1 such that t 1 (i) corresponds to $n(i), i=1,2,3$.
```
for n=100:50:200
    theta = rand(n,1)*2*pi; % Angle of random pts on the unit circle
    % Determine how long it takes to compute the largest
    % possible triangle obtained by selecting vertices from the
    % points represented by theta
    A = 0;
    for i=1:n
        for j=1:n
            for k=1:n
                    % theta --> Cartesian
                    c1 = cos(theta(i));
                    s1 = sin(theta(i));
                    c2 = cos(theta(j));
                    s2 = sin(theta(j));
                    c3 = cos(theta(k));
                    s3 = sin(theta(k));
                    % Area using Heron's Formula
                    a = sqrt((c1-c2)^2 + (s1-s2)^2);
                    b = sqrt((c1-c3)^2 + (s1-s3)^2);
                    c = sqrt((c2-c3)^2 + (s2-s3)^2);
                    s = (a+b+c)/2;
                    Aijk = sqrt((s-a)*(s-b)*(s-c)*s);
                    A = max(A,Aijk);
                end
        end
    end
end
```

2. We now start to make the computation more efficient. Append the script rather than modifying the code directly - copy and paste your code from Part 1 to Part 2 of the script and make the modification in Part 2.
Notice that there are several levels of inefficiency. The area for each different triangle is computed 6 times. Modify the loop ranges to eliminate this redundancy. Also, there are a lot of redundant sine and cosine evaluations. Address this issue by moving the c 1 , $\mathrm{s} 1, \mathrm{c} 2$ and s 2 assignments. In Part 2, store the time taken to do the computation in vector t2 such that t2(i) corresponds to $n(i)$. How much speed-up did you get?

Even with the change in where we compute c1, s1, c2 and s2, we are still doing more sine and cosine evaluations than necessary - given n values of theta we should only need to make n sine evaluations and n cosine evaluations. This suggests that we can reduce the time further by precomputing the sine and cosine of theta. We will combine this insight with another improvement in Part 3 below.
3. There is additional redundancy associated with the side length computations a, b, and c. In Part 3 , eliminate this redundancy by precomputing an $n \times n$ array D with the property that $\mathrm{D}(\mathrm{i}, \mathrm{j})$ is the distance from point $(\cos (\operatorname{theta}(\mathrm{i})), \sin (\operatorname{theta}(\mathrm{i})))$ to point $(\cos (\operatorname{theta}(\mathrm{j})), \sin (\operatorname{theta}(\mathrm{j})))$. Note that you only need the "upper half" of D since $D(i, j)=D(j, i)$. Store the time taken to do the computation in vector $t 3$ such that $t 3$ (i) corresponds to $n(i)$.
4. Draw a plot of the computation time (three graphs of time vs. n). Also show in a table the ratio of t 1 to t 3 for all n.
5. What is the expected computation time for the three methods for $n=1000$?

Final note. The speed-up that we get isn't all "free." The speed-up that we gain from precomputation has a cost in computer memory -from version 1 to version 3, the major memory requirement increases from n (length of theta) to n^{2} (dimension of D). The problem at hand, the language, and the hardware are all considerations in the trade-off between speed and memory.

Please delete your files from the computer before you leave the lab.

