CS100M Spring 2007: Project 6 Grading Guide

The coded items below (e.g., c1e, s2a) indicate what a student’s solution should accomplish. Codes that begin with the letter “c” deal with correctness; codes that begin with “s” deal with style.

Grader: If a student’s solution does not accomplish task c1a, for example, then write the task code “c1a” along with any diagnostic remarks you can give. Count the number of correctness and style errors separately. Items marked with ** count as two errors. In the table below, the top row lists the possible scores (1 to 5). The next row lists the number of correctness errors corresponding to every score category. The style score is determined similarly. Enter the total score (maximum of 10) in CMS as the project score. If there are bonus questions, enter any bonus points separately in the “Bonus Bucket,” separate from the project score.

Student: Read the grading guide for every project, even if you get a perfect score! Notice from the table below that we often give one or two “freebies,” i.e., mistakes that don’t cost you any points. Learn from working on the project, and learn from any mistakes.

Scores

· c and s stand for correctness and style; see table below.

· Parts with ** next to them means that they are double the value, *** for triple, etc.

· Apply bonus for exemplary work or doing additional tasks.

	Score
	0
	1
	2
	3
	4
	5

	# correctness errors
	12+
	9-11
	7-9
	4-6
	2-3
	0-1

	# style errors
	6+
	4-5
	2-3
	0-1
	--
	--

Note about style points: 2 style points are reserved for “interesting effects” of HyperBall and TimedBall. The minimum requirement is that one can visually distinguish the different types of balls. If all balls of a particular type simply have a certain color, for example, then there are no effects style points. The more creative and algorithmically involved the effects, the more points. However, if a project receives 0 style points based on the table above, then it is ineligible for these 2 extra points.
General

(s0a) Use meaningful variable names

(s0b) Appropriate indentation

(s0d) Appropriate and concise comments throughout

(s0e) Reasonable line lengths; no horizontal scrolling

(s0f) [up to **] No superfluous code

(s0h) No debugging output.

(s0i) Unnecessary comparisons: e.g. if (x == true) should simply be if (x). Deduct this point if you see more than 1 occurrence.

(s0j) [up to ****] Proper use of inheritance without repeated code. No shadowing (“overriding” fields).

(s0k) [up to **] Appropriate use of public and private/protected fields. Most fields should be private/protected.

(s0l) [up to ****] Incomprehensible code.

(c0a) [up to **] Program compiles without error. (1 * for each compiler error message up to 2)

(c0b) [up to **] Program successfully executes without crashing. (* for occasional, ** for persistent)

(c0c) [up to ***] Preserves given code. Make sure method headers, including arguments, stay the same.

Velocity.java

(c1a) getMagnitude method implemented correctly.

ClickBall.java

(c2a) Constructor implemented correctly.

(s2a) Constructor should not take a velocity argument.

HyperBall.java

(c3a) Constructor implemented correctly.

(c3b) [up to ***] The ball changes speed when hitting a wall. If functionality doesn’t work properly, deduct based on severity of problem with code.

(c3c) Distinguishable from other kinds of balls.

(s3a) Description added before class declaration saying how to distinguish HyperBalls.

(s0j) Reminder: make sure to check design of class and whether overriding was done properly. No shadowing (“overriding” fields).
TimedBall.java

(c4a) Constructor implemented correctly.

(c4b) [up to ***] Explosion is delayed and timed. If functionality doesn’t work properly, deduct based on severity of problem with code.
(c4c) Distinguishable from other kinds of balls.

(s4a) Description added before class declaration saying how to distinguish TimedBalls.

(s0j) Reminder: make sure to check design of class and whether overriding was done properly. No shadowing (“overriding” fields).

BoomShine.java

(c5a) Constructor implemented correctly.

(c5b) Initializes walls and balls fields.

(c5c) The right number of balls are initialized in the balls array.

(c5d) All 3 types of balls are created.

(c5e) In BoomShine.update method, Ball.update and Ball.checkBounce is called for each ball.

(c5f) User click is detected and a ClickBall is created.

(c5g) checkCollision is called for every possible pair of balls.

(c5h) Number of exploded balls is displayed.

(c5i) A second click by the user is not allowed.

api.txt

(c6a) [up to ***] Deduct a half * for each wrong answer. Round up final count; e.g., 3 wrong answers are **.
If a project gets 0 points overall in the end, then it can get 1 point if there are at least 3 right answers.

