
CS100M Spring 2007 Project 4 due Thursday 3/29 at 6pm

Submit your three files Calculator.java, Chaos.java, Fern.java online in CMS before the
project deadline. Be careful to submit your .java files and not the .class files. Both correct-
ness and good programming style contribute to your project score.

You must work either on your own or with one partner. You may discuss back-
ground issues and general solution strategies with others, but the project you
submit must be the work of just you (and your partner). If you work with a
partner, you and your partner must register as a group in CMS and submit your
work as a group.

Objectives

In this project, you will learn to write Java programs in the “procedural” style—the way we have
written MATLAB programs up to this point. (So this is not object-oriented programming yet!)
You will start with a simple program with one class and one method only to work with arith-
metic operators, methods in the Math class, type conversion, and printing. In the second ques-
tion, which has two subquestions, you will get to know two beautiful fractal objects—the
Sierpiński triangle and Barnsley’s Fern. Here you will deal with selection statements and loops.
You will learn to generate non-uniform random distributions and you will write some static
methods.

Do not use arrays in this project. In each class write the methods exactly as specified. Do
not modify the provided code unless specified.

1. Calculator

This is the warm-up exercise. Write a program Calculator.java (the class name is Calculator)
to perform the following operations and print the results. The output should be “labeled”. For
example, the output format for part (a) below may be a: 1628

a) (117+31)*11

b) 37/17

c) 37.0/17

d) The remainder of 74.23/6.28

e) The quotient of 34/13

f) The remainder of -87/9

g) Find the quotient (integer) for 74.23/6.28. Hint: use casting.

h) The result of evaluating “23 is greater than 11 and less than 45”.

i) The result of evaluating “22 is not equal to 5”.

1

j) Evaluate the expression “(37.001
√

)2 is equal to 37.001” (To do this you may use
Math.sqrt but not Math.pow)

k) The bigger value between 220 and 312 (Use methods Math.pow and Math.max)

l) Evaluate the expression sin2(π/4)+ cos2(π/4). (Use Math.sin, Math.cos, and Math.PI)

m) Generate a random number on the interval [− 1, 12]. (Use Math.random)

n) Randomly print one letter from the set {‘a’, ‘b’, ‘c’, ‘d’, ‘e’}. The probability of each
letter should be equal.) (Use Math.random)

2. Fractals

This question contains two subquestions. It might be helpful if you read both of them before
you start coding.

a. Chaos Game

Start with an equilateral triangle T in the plane whose vertices are v1 = (0, 0), v2 = (1, 0), v3 =
(1/2, 3

√
/2). Then pick an arbitrary point P0 in the plane and define a sequence of points {Pn}

as follows: Start at P0; then choose one of the triangle’s vertices at random and let P1 be the
point halfway between P0 and the chosen vertex; then again randomly choose one of the tri-
angle’s vertices and let P2 be the point halfway between P1 and the chosen vertex. Continuing
in this way yields an infinite sequence of points. Figure 1 illustrates the first few points of such a
random sequence. We can think of this sequence as a particle moving along a random trajec-
tory.

v1

v2 v3

P0

P1

P2

P3

P4

Figure 1. A possible trajectory in the chaos game.

This process is called the chaos game because of the apparently patternless movement of the
point. When we plot the points on the screen, surprisingly, a clear pattern emerges, as shown in
Figure 2. This figure is known as the Sierpiński triangle1. This question and the next will help

1. http://mathworld.wolfram.com/SierpinskiSieve.html

2

you appreciate the fact that simple mathematical manipulation of numbers can create somewhat
artistic images.

Figure 2. The Sierpiński triangle.

Your task is to generate the sequence of points {Pn} and use them to plot the Sierpiński tri-
angle. You only need to generate about 38 points in order to spot this pattern, but you are
allowed to plot more. But you don’t need to plot the vertices v1, v2 and v3. You can use the func-
tion Math.random to get a random number uniformly distributed over the range [0, 1).

You will write all your code in the main method of Chaos.java. You don’t need to learn how to
use the graphics functions of Java. A helper class MyFrame has been provided so that you can
simply put MyFrame.java into the same directory as your project and use the statement

MyFrame f = new MyFrame("Chaos Game");

to get a handler of a graphics window titled “Chaos Game”. Once you have a graphics window,
you can use a statement like

f.drawPoint(x, y, Color.black);

to draw a point at the Cartesian coordinate (x, y). The default plot range of the window is the
unit square [0, 1] × [0, 1], which is big enough for this question. The color names are defined in
the class java.awt.Color, so you need to put this line at the beginning of your file

import java.awt.Color;

You can change the color to any color that is comfortable to your eyes, for example Color.red,
Color.orange...

Submit your file Chaos.java.

b. Barnsley’s Fern

In this question you will learn to generate non-uniformly distributed random numbers and uti-
lize them to draw a lifelike image as in Figure 3. This figure was found by Barnsley2 and it
looks very much like a black spleenwort fern.

2. http://mathworld.wolfram.com/BarnsleysFern.html

3

Figure 3. Barnsley’s Fern.

Barnsley’s Fern can be drawn in almost the same way as the Sierpiński triangle. Start from an
arbitrary point; then randomly choose one of the following four functions to get the coordinate
of the next point.

f1(x, y) = (0.85x + 0.04y,− 0.04x + 0.85y + 1.6)

f2(x, y) = (− 0.15x+ 0.28y, 0.26x + 0.24y + 0.44)

f3(x, y) = (0.2x− 0.26y, 0.23x+ 0.22y + 1.6)

f4(x, y) = (0, 0.16y)

We call these functions the fern functions . Note that you need to update the point’s coordinates
simultaneously, or you might corrupt your results. If you are not sure how to code them, here is
how you might code f1 in Java

newx = 0.85*x + 0.04*y + 0;

newy = -0.04*x + 0.85*y + 1.6;

x = newx; y = newy;

But notice that we don’t pick the four functions with the same probability. The probabilities of
the four functions being chosen are 0.85, 0.07, 0.07, and 0.01. This means, one expects that in
100 applications, we have approximately applied f1 85 times, f2 7 times, f3 7 times, and f4 only
once. How can we generate this non-uniform distribution? You can simply think of this like
throwing a dart blindly into a segmented range [0,1) as shown in Figure 4. You decide which
function to apply according to which region the dart ends up in. Obviously, the dart will lie in
the range of [0, 0.85) more likely than in the range of [0.85, 1). If you toss it 100 times, one
expects that it will end up in [0, 0.85) approximately 85 times and in [0.85, 1) only 15 times.
Thus we have a non-uniform distribution of 0.85 and 0.15. You need to generalize this idea for
your purpose.

4

0 10.85

Figure 4. Generating non-uniform random numbers from uniformly distributed random numbers.

You will write two methods in Fern.java. First, write a static method biasedFour which takes
no arguments. When called, the function returns one of the four possible numbers {1, 2, 3, 4}
with probabilities 0.85, 0.07, 0.07, and 0.01 respectively. You must use the following function
header

public static int biasedFour()

Then, in your main method, generate the sequence of points for Barnsley’s fern and plot them.
When generating each point, call biasedFour to determine which of the four fern functions {f1,

f2, f3, f4} to use.

You will use the same graphics helper class MyFrame as in Question 2(a) and use the function
f.drawPoint to draw the points. After you get a handler to the graphics window, you need to
change the range of the graphics window to the region so that x ranges from -3 to 3 and y

ranges from -1 to 11. You can use the following code to set the window to the required range.

f.setRange(-3, 3, -1, 11);

Again, please remember to use import java.awt.Color; at the beginning of your file, or you
won’t be able to use the color names.

Submit your file Fern.java.

5

