CS100M Spring 2007: Project 3 Grading Guide

The coded items below (e.g., cle, s2a) indicate what a student’s solution should accomplish.
Codes
that begin with the letter 'c’ deal with correctness; codes that begin with ’s” deal with style.

Grader: If a student’s solution does not accomplish task cla, for example, then write the task
code ‘cla’ along with any diagnostic remarks you can give. Count the number of correctness
and style errors separately.

Items marked with ** count as two errors. In the table below, the top row lists the possible
scores (1 to 5). The next row lists the number of correctness errors corresponding to every score
category. The style score is determined similarly. Enter the total score (maximum of 10) in CMS
as the project score. If there are bonus questions, enter any bonus points separately in the
”"Bonus Bucket,”

separate from the project score.

Student: Read the grading guide for every project, even if you get a perfect score! Notice from
the table below that we often give one or two “freebies,” i.e., mistakes that don’t cost you any
points. Learn from working on the project, and learn from any mistakes.

Scores

e c and s stand for correctness and style; see table below.

e parts with ** next to them means that they are double the value, *** for triple, etc.
» Apply bonus for exemplary work or doing additional tasks.

Score 0 1 2 3 i 5

Number of correctness errors >11 8-10 | 6-7 4-5 2-3 0-1

Number of style errors >9 7-8 5-6 3-4 2 0-1
General

(s0a) Use meaningful variable names

(sOb) Appropriate indentation

(sOc) Appropriate comment header in each script/function file

(s0d) Appropriate and concise comments throughout

(sOe) Reasonable line lengths; no horizontal scrolling

(sOf) [up to **] No superfluous code

(sOh) No debugging output.

(cOa) [2* max] Program compiles without error. (1 * for each compiler error message up to 2)
(cOb) [2* max] Program successfully executes without crashing. (* for occasional, ** for
persistent)

Sp2007proj3 (ainur/sam)

(cOc) [2* max] Retrieve information from the user correctly

Sp2007proj3 (ainur/sam)

Part 1: integral.m

(cla)
(c1b)
(clc)
(c1d)
(cle)
(c1f)
(clg)
(c1h)
(cli)

correctly calculates h

correctly calculates value

correctly uses cumsum and vector operations in integralapprl
correctly uses cumsum and vector operations in integralappr2
correctly uses cumsum and vector operations in integralappr3
correctly uses loop-bounds in integralapprl

correctly uses loop-bounds in integralappr2

correctly uses loop-bounds in integralappr3

correctly calculates the value integralappr3

Part 2: checkvictory.m

(c2a)
(c2b)
(c2¢c)
(c2d)
(c2e)
(c2f)
(s2a)

checks for vertical arrangement

checks for horizontal arrangement

checks for diagonal down right arrangement

checks for diagonal down left arrangement

function does not try to access elements outside the array

function correctly returns the winner

function should test for victory using <condition> && <condition> && ...

Part 3: findbottom.m

(c3a)
(c3b)
(s3a)

correctly returns the lowest possible empty space
code tried to excess elements outside of the grid
only one while loop necessary

Part 4: connect4d.m

(c4a)
(c4b)
(c4c)
(c4d)
(cde)
(c4f)
(c4g)
(s4a)

program correctly detects which column is clicked even when click is outside grid
correctly detect when there is no more space in the column

correctly updates “grid” matrix

correctly calls drawx() to draw the appropriate color crosses

correctly switches between the two players

correctly updates title message

program ends when there is a winner or grid is full

student does not edit code outside of allocated portions **except for grid(rows,cols)**

Sp2007proj3 (ainur/sam)

