
CS100M Lecture 28 May 3, 2007

1

May 3, 2007 Lecture 28 2

Previous Lecture:
Review of polymorphism
Two-dimensional array of numbers

Today’s Lecture:
2-d array of objects—a String is an object
Review arrays of objects (1- and 2-d)

Reading:
Review type String in Sec 2.9.
Sec 10.3 (No need to memorize the methods! Just be aware of
the kinds of String methods available for future reference.)

May 3, 2007 Lecture 28 4

If there may be a “missing row,” check for null!

Given a 2-d integer array x, calculate the sum of all
entries in the array.

int sum = 0; // sum so far

for (int r=0; r<x.length; r++)
for (int c=0; c<x[r].length; c++)

sum += x[r][c];

x[r]!=
null &

&

May 3, 2007 Lecture 28 7

When might I use public fields?
Client needs easy access to fields
The only "service" that the class provides is
to collect related data under one (class)
name
One should still consider using private
fields though!

Example: cubicle world
Implement a class CubicleWorld that has a 2-d
array of Cubicles, so a CubicleWorld is like a
floor plan.
The array has dimensions just big enough to store the
entire floor plan including internal spaces.

A Cubicle object has fields name, row, column.
row

Alice
Ratbert
Asok CatbertCarol

Dilbert Dogbert

P-H Boss

1
2
3

1 2 3 4
column

Wally

May 3, 2007 Lecture 28 9

Instantiating 2-d arrays
A 2-d array is a 1-d array of 1-d arrays
You can create one dimension at a time:

1. Declare a reference variable for the 2-d array
2. Set 1st dimension (# rows): create a 1-d array

to hold the row references
3. Set 2nd dimension (# columns) one row at a

time: create the individual arrays that store the
values (or object references) of interest

4. Now you can assign values (or references) into
the cells of the array

May 3, 2007 Lecture 28 13

What we learned…
Develop/implement algorithms for problems
Develop programming skills

Design, implement, document, test, and debug
Apply programming languages

Control structures
Function/methods for reducing redundancy
Data structure
Fundamentals of object oriented programming, including
inheritance

Specific tasks
Simulating systems
Sorting
Searching
Plotting numeric data

CS100M Lecture 28 Handout May 3, 2007

/* A Cubicle in some office. Row and column numbers start at 1 */
// The only "service" that this class provides is to collect related
// data in a Cubicle object. (Notice that there are no methods other
// than the most basic ones: constructor and toString.) In such a case,
// one may choos
class Cubicle {

e to make the fields public.

 public String name; //name of person who uses the Cubicle
 public int row; //row number of the Cubicle
 public int column; //column number of the Cubicle

 e which is in row r, column c */ /* Constructor: Person n uses this Cubicl
 public Cubicle(String n, int r, int c) {
 name= n;
 row= r;
 column= c;
 }

 e data values of this Cubicle */ /* = a String containing th
 public String toString() {
 return name + "'s cubicle is at row " + row + ", column " + column ;
 }
} //class Cubicle

/* A CubicleWorld is a a 2-d array of Cubicles */
public class CubicleWorld {
 private Cubicle[][] floorPlan; //Refers to 2-d array of Cubicles
 private int rows; //Number of rows in floor plan
 private int[] columns; //columns[i] is # of columns in row i of floor plan

 /* Constructor: set the values of the fields */
 public CubicleWorld(int rows, int[] cols) {

 //Set 1st dimension of floor plan (number of rows)

 //Set 2nd dimension of floor plan one row at a time

 }

 /* Fill this CubicleWorld's floor plan */
 public void fillFloorPlan(Cubicle[] cubes) {

 }

 /* =Get Cubicle at row r, column c. Row, column numbers start at 1 */
 public Cubicle getCubicle(int r, int c) {

 }

 //class CubicleWorld continues on next page

CS100M Lecture 28 Handout May 3, 2007

 //class CubicleWorld, continued

 /* ={Person with name s is found in this CubicleWorld}, true or false.
 * Display the Cubicle location(s) of person(s) with name s */
 public boolean findPerson(String s) {

 }

 public static void main(String[] args) {

 int rows= 3; //Number of rows of Cubicles
 int[] columns= {3, 3, 4}; //Number of columns of Cubicles

 //Cubicle data collected as a 1-d array
 //(Remember that Cubicle row and column numbers start at 1)
 Cubicle[] workers= new Cubicle[] { new Cubicle("Alice", 1, 1),
 new Cubicle("Dilbert", 1, 2),
 new Cubicle("Dogbert", 1, 3),
 new Cubicle("Ratbert", 2, 1),
 new Cubicle("Wally", 2, 3),
 new Cubicle("Asok", 3, 1),
 new Cubicle("Carol", 3, 2),
 new Cubicle("Catbert", 3, 3),
 new Cubicle("P-H Boss", 3, 4)
 };

 //Create a CubicleWorld that is just big enough for all the workers
 CubicleWorld cw= new CubicleWorld(rows, columns);
 //Now put the workers (Cubicles) into the floorPlan
 cw.fillFloorPlan(workers);

 //Let's test a few cases:
 System.out.println(cw.getCubicle(1,3));
 System.out.println(cw.getCubicle(2,2));
 System.out.println(cw.getCubicle(3,4));

 boolean foundPerson;
 foundPerson= cw.findPerson("Ratbert");
 foundPerson= cw.findPerson("Garfield");
 }
} //class CubicleWorld

