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Previous Lecture:
One constructor calling another
Overriding methods

Today’s Lecture:
Using super to access members from the superclass
Polymorphism
Object class
Abstract

Reading:
Sec 11.8
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Accessing members in superclass
super

From constructor in subclass, call superclass’ 
constructor
Access superclass’ version of a overridden 
method.  E.g.:

super.toString()
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static methods & variables
Do not re-declare static components!

Same rules for inheritance (accessibility) with 
respect to visibility modifiers

Static method:  implicitly final

Static variable:  same memory space as superclass 
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Important ideas in inheritance
Single inheritance
Keep common features as high in the hierarchy 
as reasonably possible
Use the superclass’ features as much as possible
“Inherited” ⇒ “can be accessed as though 
declared locally”
(private variables in superclass exists in subclasses; 
they just cannot be accessed directly)

Inherited features are continually passed down 
the line
Use different hierarchies for different problems
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Polymorphism

“Have many forms”

A polymorphic reference refers to 
different objects (related through 
inheritance) at different times
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Suppose class Plane extends Vehicle

Vehicle mover; //a Vehicle reference
Plane flyer;   //a Plane reference
mover= new Vehicle(...);
flyer= new Plane(...);
// A plane is a vehicle

mover= new Plane(...);
mover= flyer;

// A vehicle is not a plane
flyer= new Vehicle(...); //invalid
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Another polymorphic example 
Vehicle[] mover = new Vehicle[5];

mover[0]= new Vehicle(...);
mover[1]= new Plane(...);
mover[2]= new Plane(...);
mover[3]= mover[1];

The reference type may not be the same as 
the object type!
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Accessing methods/variables through a 
polymorphic reference

Dice d= new TrickDice(…);

Consider the reference type and object type:
1. Which type determines whether a 

method/variable can be accessed?

2. For an overridden method, which type 
determines which version gets invoked?
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Accessing methods/variables 
through polymorphic references
The type of the reference determines the 
methods and fields that can be accessed

class V {
public int num1;
public void vmethod() { num1++; }

}
class W extends V {

public int num2;
public void wmethod() { num2++; }

}
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Client code:

V x= new W();  
System.out.println(x.num1);  //valid?
System.out.println(x.num2);  //valid?
x.vmethod();  //valid?
x.wmethod();  //valid?

System.out.println( ((W) x).num2 );
((W) x).wmethod();
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Client code:

V x;  // x references type V or its subtype
System.out.print(“Which type, V or W? ”);
Scanner keyboard= new Scanner(System.in);
char input= keyboard.nextChar();
if (input==‘V’)

x= new V();
else

x= new W();

System.out.println(x.num1);  //?
System.out.println(x.num2);  //?
x.vmethod();  //?
x.wmethod();  //?

April 26, 2007 Lecture 26 27

Consider the reference type and object type:
1. Which type determines whether a 

method/variable can be accessed?
reference  type

2. For an overridden method, which type 
determines which version gets invoked?

object  type

Accessing methods/variables through a 
polymorphic reference

Dice d= new TrickDice(…);
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Accessing overridden methods 
through polymorphic references

The type of the object determines which 
version of the method gets invoked
Class Dice has method roll that class 
TrickDice overrides:

Dice d1= new Dice(...);
Dice d2= new TrickDice(...);
d1.roll(); //Dice’s version
d2.roll(); //TrickDice’s version
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instanceof
instanceof is an operator for determining 
when an instance is of (from) a particular 
class
See example in class House
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The Object class

If a class is not explicitly defined to be the child of an 
existing class, it is assumed to be the child of the 
Object class

⇒ All classes are derived from the Object class

class Room
is the same as

class Room extends Object
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The Object class

If a class is not explicitly defined to be the child of 
an existing class, it is assumed to be the child of 
the Object class
⇒ All classes are derived from the Object class

Room

Bathroom

House

Object
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The Object class

If a class is not explicitly defined to be the child of 
an existing class, it is assumed to be the child of 
the Object class
⇒ All classes are derived from the Object class

toString:  “default” instance method defined in 
the Object class
Arrays are Objects, literally!

April 26, 2007 Lecture 26 34

abstract class
A placeholder in a class hierarchy that 
represents a generic concept
Cannot be instantiated
Modifier:  abstract

public abstract class Geometry

Can contain abstract methods
public abstract double Area();

Subclasses of abstract classes will “fill out” 
these abstract methods



/* A Room has an id number and a messiness level */ 
class Room { 
  private static int nextID = 1; //id of next room to be  
                                 //created 
  protected int id; //room number 
  private int mess; //mess level 
 
  /** A Room has unique id and messiness level mess */ 
  public Room(int mess) { this.mess = mess;   id = nextID;   nextID++; } 
  
  /** = String description of this Room */ 
  public String toString() { return "Room " + id; } 
  
  /** Reduce mess by 1 but keep 
  public void clean() { mess--; 

mess>=0 */ 

                        if (mess<0)  mess=0; } 
  
  /** Print status of Room */ 
  public void report() { System.out.println(toString() + 
                         ", has mess level " + mess);     } 
  
  /** Print how many rooms have been created */ 
  public static void countRooms() { 
    System.out.println((nextID-1)+ " rooms in total"); } 
} //class Room 
 
 
/* A Bathroom is a Room and may have a shower */ 
class Bathroom extends Room { 
 
  private boolean hasShower; //=has a shower 
   
  /** A Bathroom has initial mess level, boolean 
  public Bathroom(int mess, boolean hasShower) { 

hasShower */ 

    super(mess); 
    this.hasShower= hasShower; 
  } 
   
  /** = String description of
  public String toString() { 

 this Bathroom */ 

    String line= super.toString(); 
    line += ", a bathroom"; 
    if (hasShower)   line += " with a shower"; 
    return line; 
  } 
 
  /** Clean repeatedly.  Call method clean four times */ 
  public void majorCleanUp() { 
      clean();  clean();  clean();  clean(); 
  } 
} //class Bathroom 
 
 
public class House { //see online version for more examples 
  public static void main(String[] args) { 
     
    Room[] rooms= new Room[5]; 
   
    for (int i=0; i<rooms.length; i++) 
      if (Math.random()< 2.0/3) //{twice as likely to be Room than Bathroom} 
        rooms[i]= new Room(10); 
      else 
        rooms[i]= new Bathroom(20,true); 
  } 
} //class House 




