
CS100M Lecture 26 April 26, 2007

1

April 26, 2007 Lecture 26 2

Previous Lecture:
One constructor calling another
Overriding methods

Today’s Lecture:
Using super to access members from the superclass
Polymorphism
Object class
Abstract

Reading:
Sec 11.8

April 26, 2007 Lecture 26 10

Accessing members in superclass
super

From constructor in subclass, call superclass’
constructor
Access superclass’ version of a overridden
method. E.g.:

super.toString()

April 26, 2007 Lecture 26 11

static methods & variables
Do not re-declare static components!

Same rules for inheritance (accessibility) with
respect to visibility modifiers

Static method: implicitly final

Static variable: same memory space as superclass

April 26, 2007 Lecture 26 12

Important ideas in inheritance
Single inheritance
Keep common features as high in the hierarchy
as reasonably possible
Use the superclass’ features as much as possible
“Inherited” ⇒ “can be accessed as though
declared locally”
(private variables in superclass exists in subclasses;
they just cannot be accessed directly)

Inherited features are continually passed down
the line
Use different hierarchies for different problems

April 26, 2007 Lecture 26 13

Polymorphism

“Have many forms”

A polymorphic reference refers to
different objects (related through
inheritance) at different times

April 26, 2007 Lecture 26 16

Suppose class Plane extends Vehicle

Vehicle mover; //a Vehicle reference
Plane flyer; //a Plane reference
mover= new Vehicle(...);
flyer= new Plane(...);
// A plane is a vehicle

mover= new Plane(...);
mover= flyer;

// A vehicle is not a plane
flyer= new Vehicle(...); //invalid

CS100M Lecture 26 April 26, 2007

2

April 26, 2007 Lecture 26 17

Another polymorphic example
Vehicle[] mover = new Vehicle[5];

mover[0]= new Vehicle(...);
mover[1]= new Plane(...);
mover[2]= new Plane(...);
mover[3]= mover[1];

The reference type may not be the same as
the object type!

April 26, 2007 Lecture 26 18

Accessing methods/variables through a
polymorphic reference

Dice d= new TrickDice(…);

Consider the reference type and object type:
1. Which type determines whether a

method/variable can be accessed?

2. For an overridden method, which type
determines which version gets invoked?

April 26, 2007 Lecture 26 21

Accessing methods/variables
through polymorphic references
The type of the reference determines the
methods and fields that can be accessed

class V {
public int num1;
public void vmethod() { num1++; }

}
class W extends V {

public int num2;
public void wmethod() { num2++; }

}
April 26, 2007 Lecture 26 25

Client code:

V x= new W();
System.out.println(x.num1); //valid?
System.out.println(x.num2); //valid?
x.vmethod(); //valid?
x.wmethod(); //valid?

System.out.println(((W) x).num2);
((W) x).wmethod();

April 26, 2007 Lecture 26 26

Client code:

V x; // x references type V or its subtype
System.out.print(“Which type, V or W? ”);
Scanner keyboard= new Scanner(System.in);
char input= keyboard.nextChar();
if (input==‘V’)

x= new V();
else

x= new W();

System.out.println(x.num1); //?
System.out.println(x.num2); //?
x.vmethod(); //?
x.wmethod(); //?

April 26, 2007 Lecture 26 27

Consider the reference type and object type:
1. Which type determines whether a

method/variable can be accessed?
reference type

2. For an overridden method, which type
determines which version gets invoked?

object type

Accessing methods/variables through a
polymorphic reference

Dice d= new TrickDice(…);

CS100M Lecture 26 April 26, 2007

3

April 26, 2007 Lecture 26 28

Accessing overridden methods
through polymorphic references

The type of the object determines which
version of the method gets invoked
Class Dice has method roll that class
TrickDice overrides:

Dice d1= new Dice(...);
Dice d2= new TrickDice(...);
d1.roll(); //Dice’s version
d2.roll(); //TrickDice’s version

April 26, 2007 Lecture 26 29

instanceof
instanceof is an operator for determining
when an instance is of (from) a particular
class
See example in class House

April 26, 2007 Lecture 26 30

The Object class

If a class is not explicitly defined to be the child of an
existing class, it is assumed to be the child of the
Object class

⇒ All classes are derived from the Object class

class Room
is the same as

class Room extends Object

April 26, 2007 Lecture 26 32

The Object class

If a class is not explicitly defined to be the child of
an existing class, it is assumed to be the child of
the Object class
⇒ All classes are derived from the Object class

Room

Bathroom

House

Object

April 26, 2007 Lecture 26 33

The Object class

If a class is not explicitly defined to be the child of
an existing class, it is assumed to be the child of
the Object class
⇒ All classes are derived from the Object class

toString: “default” instance method defined in
the Object class
Arrays are Objects, literally!

April 26, 2007 Lecture 26 34

abstract class
A placeholder in a class hierarchy that
represents a generic concept
Cannot be instantiated
Modifier: abstract

public abstract class Geometry

Can contain abstract methods
public abstract double Area();

Subclasses of abstract classes will “fill out”
these abstract methods

/* A Room has an id number and a messiness level */
class Room {
 private static int nextID = 1; //id of next room to be
 //created
 protected int id; //room number
 private int mess; //mess level

 /** A Room has unique id and messiness level mess */
 public Room(int mess) { this.mess = mess; id = nextID; nextID++; }

 /** = String description of this Room */
 public String toString() { return "Room " + id; }

 /** Reduce mess by 1 but keep
 public void clean() { mess--;

mess>=0 */

 if (mess<0) mess=0; }

 /** Print status of Room */
 public void report() { System.out.println(toString() +
 ", has mess level " + mess); }

 /** Print how many rooms have been created */
 public static void countRooms() {
 System.out.println((nextID-1)+ " rooms in total"); }
} //class Room

/* A Bathroom is a Room and may have a shower */
class Bathroom extends Room {

 private boolean hasShower; //=has a shower

 /** A Bathroom has initial mess level, boolean
 public Bathroom(int mess, boolean hasShower) {

hasShower */

 super(mess);
 this.hasShower= hasShower;
 }

 /** = String description of
 public String toString() {

 this Bathroom */

 String line= super.toString();
 line += ", a bathroom";
 if (hasShower) line += " with a shower";
 return line;
 }

 /** Clean repeatedly. Call method clean four times */
 public void majorCleanUp() {
 clean(); clean(); clean(); clean();
 }
} //class Bathroom

public class House { //see online version for more examples
 public static void main(String[] args) {

 Room[] rooms= new Room[5];

 for (int i=0; i<rooms.length; i++)
 if (Math.random()< 2.0/3) //{twice as likely to be Room than Bathroom}
 rooms[i]= new Room(10);
 else
 rooms[i]= new Bathroom(20,true);
 }
} //class House

