
CS100M Lecture 25 April 24, 2007

1

April 24, 2007 Lecture 25 2

Previous Lecture:
Array of objects
Inheritance—extending a class

Today’s Lecture:
Constructor in the subclass
Overriding methods
Using super to access members from the superclass

Reading:
Sec 11.3, 11.6, 11.7

April 24, 2007 Lecture 25 3

class Dice {

private int top;
private int sides;

public Dice(…) {…}
public void roll() {…}
public String toString(){…}
public int getTop() {…}
public int getSides() {…}

}

class TrickDice extends Dice
{
private int weightedSide;
private int weight;

public TrickDice(…) {…}
public void roll() {…}
public String toString(){…}
public int getWSide() {…}
public int getWeight() {…}

}

Make TrickDice a subclass of Dice.

a0

Dice5top

6sides
Dice(…)
roll()

getTop()
getSides()

TrickDice
2weightedSide

toString()

3weight
TrickDice(…)
roll()
toString()

getWSide()
getWeight()

April 24, 2007 Lecture 25 5

Inheritance
Inheritance relationships are shown in a class
diagram, with the arrow pointing to the parent class

An is-a relationship: the child is a more specific
version of the parent

Single inheritance: one parent only

Dice

TrickDice

April 24, 2007 Lecture 25 7

Inheritance
Allows programmer to derive a class from an existing one

Existing class is called the parent class, or superclass

Derived class is called the child class or subclass

The child class inherits the (public) members defined for the
parent class

Inherited trait can be accessed as though it was locally
declared (defined)

April 24, 2007 Lecture 25 9

Calling one constructor from another
In a subclass’ constructor, call the superclass’
constructor with the keyword super instead
of the superclass’ (constructor’s) name

Always make a call to the superclass’
constructor as the 1st statement in a
constructor in a subclass!

CS100M Lecture 25 April 24, 2007

2

April 24, 2007 Lecture 25 10

class TrickDice extends Dice {

private int weightedSide; //Weighted side appears more often
private int weight; //Weighted side appears weight

// times as often as other sides

/** TrickDice has side s appearing with weight w */
public TrickDice(int numFaces, int s, int w) {

super(numFaces);
weightedSide= s;
weight= w;

}

//other methods…
}

class Dice {
private int top; // top face
private int sides; // number of sides

/** A Dice has numSides sides and the top face is random */
public Dice(int numSides) {
sides= numSides;
roll();

}

/** top gets a random value in 1..sides */
public void roll() { setTop(randInt(1,getSides())) ; }

/** = random int in [low..high], low<high */
public static int randInt(int low, int high) {
return (int) (Math.random()*(high-low+1))+low;

}

/** Set top to faceValue */
private void setTop(int faceValue) { top= faceValue; }
// more methods below…

}

April 24, 2007 Lecture 25 12

Reserved word super
Invoke constructor of superclass

super(parameter-list);

parameter-list must match that in
superclass’ constructor

April 24, 2007 Lecture 25 14

Calling one constructor from another
In a subclass’ constructor, call the superclass’
constructor with the keyword super instead
of the superclass’ (constructor’s) name
To call another constructor from a
constructor in the same class, use the
keyword this
Always make a call to a constructor (super or
this) as the 1st statement in a constructor in
a subclass!

April 24, 2007 Lecture 25 15

/* A 2nd TrickDice constructor: 6-sided
TrickDice has side s appearing with weight w,
s<=6 */
public TrickDice(int s, int w) {

//what goes in here?
}

a. TrickDice(6, s, w);
b. this(6, s, w);
c. Dice(6, s, w);
d. super(6, s, w);
e. 2 of the above

April 24, 2007 Lecture 25 16

Which components get inherited?
public components get inherited
private components exist in object of child
class, but cannot be directly accessed in child
class ⇒ we say they are not inherited
Note the difference between inheritance and
existence!

CS100M Lecture 25 April 24, 2007

3

April 24, 2007 Lecture 25 17

protected visibility (see Sec 7.2 for detail)

Visibility modifiers control which members get inherited

private
Not inherited, can be accessed by local class only

public
Inherited, can be accessed by all classes

protected
Inherited, can be accessed by subclasses

Access : access as though declared locally
All variables from a superclass exist in the subclass, but
the private ones cannot be accessed directly

April 24, 2007 Lecture 25 20

class Dice {

public Dice(…) {
…
roll();

}

public void roll() {…}

//…other methods, fields
}

class TrickDice extends Dice{

public TrickDice(…) {
super(…);
…

}

public void roll() {…}

//…other methods, fields
}

Overridden methods: which version gets invoked?
To create TrickDice: call the TrickDice constructor, which
calls the Dice constructor, which calls the roll method.
Which roll method gets invoked?

April 24, 2007 Lecture 25 21

Overriding methods
Subclass can override definition of inherited method
New method in subclass must have same signature
as superclass (but has different method body)
Which method gets used??
The object that is used to invoke a method
determines which version is used
Method declared to be final cannot be overridden
Do not confuse overriding with overloading!

April 24, 2007 Lecture 25 23

Accessing members in superclass
super

From constructor in subclass, call superclass’
constructor
Access superclass’ version of a overridden
method. E.g.:

super.toString()

April 24, 2007 Lecture 25 24

static methods & variables
Do not re-declare static components!

Same rules for inheritance (accessibility) with
respect to visibility modifiers

Static method: implicitly final

Static variable: same memory space as superclass

April 24, 2007 Lecture 25 25

Important ideas in inheritance
Single inheritance
Keep common features as high in the hierarchy
as reasonably possible
Use the superclass’ features as much as possible
“Inherited” ⇒ “can be accessed as though
declared locally”
(private variables in superclass exists in subclasses;
they just cannot be accessed directly)

Inherited features are continually passed down
the line
Use different hierarchies for different problems

/** A Dice (or Die) */
class Dice {

 private int top; // top face
 private int sides; // number of sides

 /** A Dice has numSides sides and the top face is random */
 public Dice(int numSides) {
 sides= numSides;
 roll();
 }

 /** top gets a random value in 1..sides */
 public void roll() {
 setTop(randInt(1,getSides())) ;
 }

 /** = random int in [low..high], low<high */
 public static int randInt(int low, int high) {
 return (int) (Math.random()*(high-low+1))+low;
 }

 /** Set top to faceValue */
 protected void setTop(int faceValue) { top= faceValue; }

 /** = Get top face */
 public int getTop() { return top; }

 /** = Get number of sides */
 public int getSides() { return sides; }

 /** = String description of this Dice */
 public String toString() {
 return getSides() + "-sided dice shows face " + getTop();
 }
} //class Dice

/** A TrickDice has one weightedSide such that the
 * weightedSide appears weight times as often as other sides
 */
class TrickDice extends Dice {

 private int weightedSide; //Weighted side appears more often
 private int weight; //Weighted side appears weight times as often as other sides

 /** TrickDice has side s appearing with weight w */
 public TrickDice(int numFaces, int s, int w) {
 super(numFaces);
 weightedSide= s;
 weight= w;
 }

 /** = Get weighted side */
 public int getWSide() { return weightedSide; }

 /** = Get weight of weighted side */
 public int getWeight() { return weight; }

 /** top gets random value in 1..sides given trick property */
 public void roll() {
 int r= randInt(1,(getSides()+weight-1));
 if (r>getSides())
 setTop(weightedSide);
 else
 setTop(r);
 }

 /** = String description of this TrickDice */
 public String toString() { return "Tricky " + super.toString(); }
} //class TrickDice

