CS100M Lecture 24 April 19, 2007

= Previous Lecture:

= Selection sort, linear search, binary search /in
section]

= Today’s Lecture:
= Array of objects
= Searching in an array of objects
= Inheritance—extending a class

= Reading:
= Sec 11.1, 11.2, 11.4, 11.5

April 19, 2007 Lecture 24 2

Separate classes—each has its own members

class Dice { class TrickDice {

private int top; private int top;

private int sides; private int sides;
private int weightedSide;
public Dice(.) {.} private int weight;

public void roll() {.} public TrickDice(.) {.}
public String toString(Q{ .} public void rol1() {.}

public int getTop({.} public String toStringQ{.}
public int getSides() {.} | public int getTopO{.}
H public int getSides() {.}

public int getWSide() {.}
public int getWeight() {.}

April 19, 2007 Lecture 24 19

Can we get all the functionality of Dice in TrickDice without
re-writing all the Dice components in class TrickDice?

class Dice { class TrickDice {

//everything in class Dice
//plus new/modified stuff
//below

private int top;
private int sides;

public Dice(.) {.}
public void roll(Q {.}
public String toString(Q{. X

private int weightedSide;
private int weight;

public int getTop() {.} public TrickDice(.) {.}
public int getSidesQ) {.} | public void roll() {.}
} public String toString(QQ{.}

public int getWSide() {.}
public int getWeight() {.}

Yes! Make TrickDice a subclass of Dice.

class Dice { class TrickDice extends Diceg
{
private int weightedSide;
private int weight;

private int top;
private int sides;

public Dice(.) {.} public TrickDice(.) {.}

public void roll(Q) {.} public void roll(Q) {.}

public String toString(){.}] public String toString(Q{.}

public int getTop(Q {.} public int getWSide(Q) {.}

public int getSides(Q {.} public int getWeight() {.}
3 3

April 19, 2007 Lecture 24 21

3
a0
- : Dice
sides :
Dice(...) getTop()
rollQ getSides()
toString()
TrickDi
weightedSide ‘ rickDice
weight -3
TrickDice(...) getWsSide()
rollQ getWeight()
toString()

Inheritance

Inheritance relationships are shown in a c/ass
diagram, with the arrow pointing to the parent class

[Dice }

f

[TrickDice }

An /s-a relationship: the child /s a more specific
version of the parent

Single inheritance: one parent only

April 19, 2007 Lecture 24 23

CS100M Lecture 24 April 19, 2007

Inheritance

= Allows programmer to derive a class from an existing one
= Existing class is called the parent class, or superclass
= Derived class is called the c/ild class or subclass

= The child class /nherits the (public) members defined for the
parent class

= Inherited trait can be accessed as though it was locally
declared (defined)

April 19, 2007 Lecture 24 2

Calling one constructor from another

= In a subclass’ constructor, call the superclass’
constructor with the keyword super instead
of the superclass’ (constructor’s) name

= Always make a call to the superclass’
constructor as the 1t statement in a
constructor in a subclass!

April 19, 2007 Lecture 24 28

class TrickDice extends Dice {

private int weightedSide; //Weighted side appears more often
private int weight; //Weighted side appears weight
/] times as often as other sides

/** TrickDice has side s appearing with weight w */
public TrickDice(int numFaces, int s, int w) {
super(numFaces);
weightedSide=s;
weight= w;

}

//other methods...
}

April 19, 2007 Lecture 24 2

class Dice {
private int top; // top face
private int sides; // number of sides

/** A Dice has numSides sides and the top face is random */
public Dice(int numSides) {

sides= numSides;

roll();
}

/** top gets a random value in 1..sides */
public void roll() { setTop(randInt(1,getSides())) ; }

/** = random int in [low..high], low<high */
public static int randInt(int low, int high) {
return (int) (Math.random()*(high-low+1))+low;

/** Set top to faceValue */
private void setTop(int faceValue) { top= faceValue; }

April 19, 2007 Lecture 24 20

Reserved word super

Invoke constructor of superclass
super(parameter-list);

parameter-list must match that in
superclass’ constructor

April 19, 2007 Lecture 24 £

Calling one constructor from another

= In a subclass’ constructor, call the superclass’
constructor with the keyword super instead
of the superclass’ (constructor’'s) name

= To call another constructor from a
constructor in the same class, use the
keyword this

= Always make a call to a constructor (super or
this) as the 1%t statement in a constructor in
a subclass!

April 19, 2007 Lecture 24 33

