
CS100M Lecture 22 April 12, 2007

1

April 12, 2007 Lecture 22 2

Previous Lecture:
Defining a class:

Methods with non-primitive parameters
Methods that return non-primitive values
Static variables and methods

Today’s Lecture:
Method overloading
Review with Person class
1-d array

Reading:
Sec 8.1-8.5
“Enhanced for-loop” in Sec 8.2 is optional

April 12, 2007 Lecture 22 3

/* =the overlapped Interval between
Intervals a and b */

public static Interval overlap(Interval a,
Interval b) {

Interval olap; // overlapped interval
double left, right; // olap’s left & right

left = Math.max(a.getBase(),b.getBase());
right = Math.min(a.getEnd(),b.getEnd());
if ((right-left) <= 0)

olap= null;
else

olap= new Interval(left, right-left);
return olap;

}

April 12, 2007 Lecture 22 4

public class Client {
public static void main(String[] args){
Interval i1= new Interval(0.2,0.7);
Interval i2= new Interval(

Math.random(),0.2);

Interval o= Interval.overlap(i1,i2);

}
}

April 12, 2007 Lecture 22 5

i1

Interval()
getEnd()
isIn()

0.2base
width 0.7

…

i2

Interval()
getEnd()
isIn()

0.1base
width 0.2

…

5.0MAXwidth

overlap()

The world of
class Interval

April 12, 2007 Lecture 22 7

An instance overlap method

Write an instance method
overlap(...)

that returns a new Interval if two Intervals
overlap. Return null otherwise.

What is the method header? What should be the
parameters, if any?

Are the static and instance versions very different?

April 12, 2007 Lecture 22 9

/* =the overlapped Interval between
Intervals a and b */

public static Interval overlap(
Interval a, Interval b)

/* =the overlapped Interval between this
Interval and Interval b */

public Interval overlap(Interval b)

CS100M Lecture 22 April 12, 2007

2

April 12, 2007 Lecture 22 12

Method overloading

Different methods can have the same name
A method has a signature: method name
and the parameter types (including the
order)
In a class, all methods must have different
signatures
The return type is not part of the signature
E.g., the abs method in the Math class

class Interval {
private double base; // low end
private double width; // interval width
public static final double maxWidth=5;

public Interval(double b, double w) {
setBase(b);
setWidth(w);

}

public Interval() {}

/* An Interval with base b and maxWdith */
public Interval(double b) {

setBase(b);
setWidth(maxWidth);

}

// other methods below

this(b,maxWidth)

April 12, 2007 Lecture 22 15

Chain invocation of methods
Suppose there are 3 intervals: i1, i2, i3
You know that i1 and i2 overlap
Write code to find if the overlapped interval of i1
and i2 is in interval i3
Interval i1 = new Interval(…);
Interval i2 = new Interval(…);
Interval i3 = new Interval(…);
// Assume i1 and i2 overlap
if ()

System.out.println(“in i3”);
else

System.out.println(“not in i3”);
April 12, 2007 Lecture 22 17

Interval i1 = new Interval(…);
Interval i2 = new Interval(…);
Interval i3 = new Interval(…);
/* Without assuming that i1 and i2

overlap */

April 12, 2007 Lecture 22 19

A different example

Create a Person class to organize data
about a Person:
Name
Age

…

public class Person {
private String name;
private int age;

public static final int LEGALage=18;

/** Constructor */
public Person(String name, int age)
{ this.name= name; this.age= age; }

/** =This Person is an adult */
public boolean isAdult()
{ return age >= LEGALage; }

/** =String description of this Person */
public String toString()
{ return name + “ is ” + age; }

} // class Person

CS100M Lecture 22 April 12, 2007

3

April 12, 2007 Lecture 22 21

Modify Person class

Modify Person class to store data about a
Person’s best friend: add another instance
variable friend
What should be the type of the field
friend?

Add two more methods to the class
definition: makeFrend, beFriendOf

April 12, 2007 Lecture 22 23

/** Make a friend with Person p */
public void makeFriend(Person p) {

}

/** Become a friend of Person p */
public void beFriendOf(Person p) {

}

April 12, 2007 Lecture 22 28

Arrays

An array is an object
An array is an ordered list of values (or
objects)
Each element is of the same type

An array of size N is indexed from 0 to N-1

79 87 94 82 67 98 87 81 74 91data

Entire array has
a single name

0 1 2 3 4 5 6 7 8 9

Each element has an
integer index

April 12, 2007 Lecture 22 29

Array declaration

type[] identifier;

Examples:
int[] counts;
double[] price;
boolean[] flip;
char[] vowel;
String[] names;
Interval[] series;

April 12, 2007 Lecture 22 30

Array construction (instantiation)

new type[size]

Example:
new int[4]

Declaration & creation:
int limit= 4;
double[] price;
price= new double[limit];

must be an integer

April 12, 2007 Lecture 22 31

Array declaration & construction

type[] identifier = new type[size];

Example:
int[] counts= new int[4];

Then values can be assigned into the cells,
e.g.:

counts[0]= 6; counts[2]= 9;

CS100M Lecture 22 April 12, 2007

4

April 12, 2007 Lecture 22 32

Array length and default values

Once created, an array has a fixed length, held in
the array’s constant called length:
int[] counts= new int[4];
System.out.println(counts.length);
// will print 4

System.out.println(counts[2]);
// Array components have default
// values. Above statement will
// print 0

April 12, 2007 Lecture 22 34

Array creation with initializer list

Create an array using an initializer list:

int[] x= new int[]{6,3,4,8};

Length of array is determined by length of the
initializer list. Shortcut:

int[] x= {6,3,4,8};
Only when declaring & creating in same statement!

April 12, 2007 Lecture 22 35

Index operator []
identifier[integer_expression]

Accesses an element of the array, e.g.:
int[] count= new int[101];

// declaration & instantiation
count[70+9]= 98;

// set count[79] to 98
int face= (int) (Math.random()*6);
count[face]= count[face] + 1;
count[face]++;

April 12, 2007 Lecture 22 37

Elements in an array

If count is of type int[], i.e., an array of
ints, then the type of

count[i]
is int and count[i] can be used anywhere
an int variable can be used

Type of count: int[]
Type of count[i]: int

April 12, 2007 Lecture 22 39

Pattern for processing an array
// assume an array has been
// created and is referred to by
// variable A

for (int i=0; i<A.length; i++) {

// perform some process
// (on A[i])

}

April 12, 2007 Lecture 22 40

Example
// Create an array of length 6
// with random numbers in the range
// of 5 to 9. Calculate the sum.

