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Previous Lecture:
Defining a class:

Methods with non-primitive parameters
Methods that return non-primitive values
Static variables and methods

Today’s Lecture:
Method overloading
Review with Person class
1-d array

Reading:  
Sec 8.1-8.5  
“Enhanced for-loop” in Sec 8.2 is optional
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/* =the overlapped Interval between 
Intervals a and b */

public static Interval overlap(Interval a, 
Interval b) {

Interval olap;      // overlapped interval
double left, right; // olap’s left & right

left = Math.max(a.getBase(),b.getBase());
right = Math.min(a.getEnd(),b.getEnd());
if ( (right-left) <= 0 )

olap= null;
else

olap= new Interval(left, right-left);
return olap;

}
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public class Client {
public static void main(String[] args){
Interval i1= new Interval(0.2,0.7);
Interval i2= new Interval(

Math.random(),0.2);

Interval o= Interval.overlap(i1,i2);

}
}
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The world of 
class Interval
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An instance overlap method

Write an instance method 
overlap(...)

that returns a new  Interval if two Intervals
overlap.  Return null otherwise.

What is the method header?  What should be the 
parameters, if any?

Are the static and instance versions very different?
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/* =the overlapped Interval between 
Intervals a and b */

public static Interval overlap(
Interval a, Interval b)

/* =the overlapped Interval between this
Interval and Interval b */

public Interval overlap(Interval b)
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Method overloading

Different methods can have the same name
A method has a signature:  method name 
and the parameter types (including the 
order)
In a class, all methods must have different 
signatures
The return type is not part of the signature
E.g., the abs method in the Math class

class Interval {
private double base;  // low end
private double width; // interval width
public static final double maxWidth=5;

public Interval(double b, double w) {
setBase(b);
setWidth(w);

}

public Interval() {}

/* An Interval with base b and maxWdith */
public Interval(double b) {

setBase(b);
setWidth(maxWidth);

}

// other methods below

this(b,maxWidth)

April 12, 2007 Lecture 22 15

Chain invocation of methods
Suppose there are 3 intervals:  i1, i2, i3
You know that i1 and i2 overlap
Write code to find if the overlapped interval of i1
and i2 is in interval i3
Interval i1 = new Interval(…);
Interval i2 = new Interval(…);
Interval i3 = new Interval(…);
// Assume i1 and i2 overlap
if (                                 )

System.out.println(“in i3”);
else

System.out.println(“not in i3”);
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Interval i1 = new Interval(…);
Interval i2 = new Interval(…);
Interval i3 = new Interval(…);
/* Without assuming that i1 and i2

overlap */
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A different example

Create a Person class to organize data 
about a Person:
Name
Age

…

public class Person {
private String name;
private int age;

public static final int LEGALage=18;

/** Constructor */
public Person(String name, int age)
{ this.name= name; this.age= age; }

/** =This Person is an adult */
public boolean isAdult()
{ return age >= LEGALage; }

/** =String description of this Person */
public String toString()
{ return name + “ is ” + age; }

} // class Person
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Modify Person class

Modify Person class to store data about a 
Person’s best friend:  add another instance 
variable friend
What should be the type of the field 
friend?

Add two more methods to the class 
definition:  makeFrend, beFriendOf
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/** Make a friend with Person p */
public void makeFriend(Person p) {

}

/** Become a friend of Person p */
public void beFriendOf(Person p) {

}
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Arrays

An array is an object
An array is an ordered list of values (or 
objects)
Each element is of the same type

An array of size N is indexed from 0  to  N-1

79   87   94   82   67   98   87   81   74   91data

Entire array has 
a single name

0     1     2     3     4     5     6     7     8     9

Each element has an 
integer index

April 12, 2007 Lecture 22 29

Array declaration

type[] identifier;

Examples:
int[] counts;
double[] price;
boolean[] flip;
char[] vowel;
String[] names;
Interval[] series;
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Array construction (instantiation)

new type[ size ]

Example:
new int[4]

Declaration & creation:
int limit= 4;
double[] price;
price= new double[limit];

must be an integer
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Array declaration & construction

type[] identifier = new type[size];

Example:
int[] counts= new int[4];

Then values can be assigned into the cells, 
e.g.:

counts[0]= 6;  counts[2]= 9;
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Array length and default values

Once created, an array has a fixed length, held in 
the array’s constant called length:
int[] counts= new int[4];
System.out.println(counts.length);
// will print 4

System.out.println(counts[2]);
// Array components have default
// values.  Above statement will 
// print 0
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Array creation with initializer list

Create an array using an initializer list:

int[] x= new int[]{6,3,4,8};

Length of array is determined by length of the 
initializer list.   Shortcut:

int[] x= {6,3,4,8};
Only when declaring & creating in same statement!
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Index operator []
identifier[integer_expression]

Accesses an element of the array, e.g.:
int[] count= new int[101];

// declaration & instantiation 
count[70+9]= 98;

// set count[79] to 98
int face= (int) (Math.random()*6);
count[face]= count[face] + 1;
count[face]++;
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Elements in an array

If count is of type int[], i.e., an array of 
ints, then the type of

count[i]
is int and count[i] can be used anywhere 
an int variable can be used

Type of  count:  int[]
Type of  count[i]:  int
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Pattern for processing an array
// assume an array has been
// created and is referred to by
// variable A

for (int i=0; i<A.length; i++) {

// perform some process
// (on A[i])

}
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Example
// Create an array of length 6
// with random numbers in the range
// of 5 to 9.  Calculate the sum.


