CS100M Lecture 22 April 12, 2007

= Previous Lecture:

= Defining a class:
= Methods with non-primitive parameters
= Methods that return non-primitive values
= Static variables and methods

= Today's Lecture:
= Method overloading
= Review with Person class
= 1-d array

= Reading:
= Sec 8.1-8.5
= “Enhanced for-loop” in Sec 8.2 is optional

April 12, 2007 Lecture 22 2

* =—the overlapped Interval between
Intervals a and b */
public static Interval overlap(Interval a,
Interval b) {
Interval olap; // overlapped interval
double left, right; // olap’s left & right

left = Math.max(a.getBase(),b.getBase());
right = Math.min(a.getEnd(),b.getEnd(Q));
if ((right-left) <=0)

olap= null;
else

olap= new Interval(left, right-left);
return olap;

}

April 12, 2007 Lecture 22 3

public class Client {
public static void main(String[] args){
Interval il= new Interval(0.2,0.7);
Interval i2= new Interval(
Math.random(),0.2);

Interval o= Interval.overlap(il,i2);

April 12, 2007 Lecture 22 4

.) The world of
i1 B\ i2 B\ /classlnterval
]

7 '
MAXwidth
base[0.2 | base 0.1 | overlap()
width width P
Interval() Interval()
getEnd() getEnd()
isin() isIn()

April 12, 2007 Lecture 22 5

An instance over lap method
= Write an instance method

overlap(...)

that returns a new Interval if two Intervals
overlap. Return nul I otherwise.

= What is the method header? What should be the
parameters, if any?

= Are the static and instance versions very different?

April 12, 2007 Lecture 22 7

/* =the overlapped Interval between
Intervals a and b */
public static Interval overlap(
Interval a, Interval b)

/* =the overlapped Interval between this
Interval and Interval b */
public Interval overlap(Interval b)

April 12, 2007 Lecture 22 9

CS100M Lecture 22 Apri

112, 2007

Method overloading

= Different methods can have the same name

= A method has a signature: method name
and the parameter types (including the
order)

= In a class, all methods must have different
signatures

= The return type is not part of the signature
= E.g., the abs method in the Math class

April 12, 2007 Lecture 22 12

class Interval {
private double base; // low end
private double width; // interval width
public static final double maxWidth=5;

public Interval(double b, double w) {
setBase(b);
setWidth(w);

}

public Interval(Q) {}

/* An Interval with base b and maxWdith */
public Interval(double b) {

setBase(b); this(b,maxWidth)
setWidth(maxWidth);

}

// other methods below

Chain invocation of methods
= Suppose there are 3 intervals: i1, 12, i3
= You know that i1 and 12 overlap

= Write code to find if the overlapped interval of il
and §2 /s /ninterval 13

Interval il = new Interval(.);
Interval 12 = new Interval(.);
Interval 13 = new Interval(.);
// Assume il and i2 overlap

if ()
System.out._printIn(*“in i3”);
else

System.out.printIin(“not in i3”);

April 12, 2007 Lecture 22 15

Interval il = new Interval(.);

Interval i2 = new Interval(.);

Interval i3 = new Interval(.);

/* Without assuming that il and 12
overlap */

April 12, 2007 Lecture 22

A different example

= Create a Person class to organize data
about a Person:
= Name
= Age

April 12, 2007 Lecture 22 19

public class Person {
private String name;
private int age;

public static final int LEGALage=18;

/** Constructor */
public Person(String name, int age)
{ this.name= name; this.age= age; }

/** =This Person is an adult */
public boolean isAdult(Q)
{ return age >= LEGALage; }

/** =String description of this Person */
public String toString(Q)
{ return name + “ is + age; }

} // class Person

CS100M Lecture 22 April 12, 2007

Modify Person class

= Modify Person class to store data about a
Person’s best friend: add another instance
variable friend

= What should be the type of the field
friend?

= Add two more methods to the class
definition: makeFrend, beFriendOf

April 12, 2007 Lecture 22 21

/** Make a friend with Person p */
public void makeFriend(Person p) {

/** Become a friend of Person p */
public void beFriendOf(Person p) {

}

April 12, 2007 Lecture 22 2

Arrays

= An array is an object

= An array is an ordered list of values (or
objects)

= Each element is of the same type

Entire array has

. Each element has an
a single name

/integer index

data |79]87]04] 82| 67| 98] 7] 81| 74] 01

An array of size N is indexed from 0 to N-1

April 12, 2007 Lecture 22 28

Array declaration

~ type[] identifier;

Examples:
int[] counts;
double[] price;
boolean[] flip;
char[] vowel;
String[] names;
Interval[] series;

April 12, 2007 Lecture 22 2

Array construction (instantiation)

‘ new type[si%e 1 ‘

Example: must be an integer
new int[4]
Declaration & creation:
int limit= 4;
double[] price;
price= new double[limit];

April 12, 2007 Lecture 22 30

Array declaration & construction

‘type[] identifier = new type[size];‘

Example:
int[] counts= new int[4];

Then values can be assigned into the cells,
e.g.:
counts[0]= 6; counts[2]= 9;

April12,2000 Lecwre 22 £

CS100M Lecture 22 April 12, 2007

Array length and default values

Once created, an array has a fixed length, held in
the array’s constant called length:
int[] counts= new int[4];
System.out.println(counts.length);
// will print 4

System.out.printin(counts[2]);
// Array components have default
// values. Above statement will
// print O

April 12, 2007 Lecture 22

Array creation with initializer list

Create an array using an initializer list:
int[] x= new int[]{6,3,4,8%};

Length of array is determined by length of the
initializer list. Shortcut:

int[] x= {6.3,4,8};
Only when declaring & creating in same statement!

April 12, 2007 Lecture 22 Ed

Index operator []

‘ identifier[integer_expression]

Accesses an element of the array, e.g.:

int[] count= new int[101];

// declaration & instantiation
count[70+9]= 98;

// set count[79] to 98
int face= (int) (Math.random()*6);
count[face]= count[face] + 1;
count[face]++;

April 12, 2007 Lecture 22

Elements in an array

If count is of type int[], i.e., an array of
ints, then the type of

count[i]
is int and count[i] can be used anywhere
an int variable can be used

Type of count: int[]
Type of count[i]: int

April 12, 2007 Lecture 22 Ed

Pattern for processing an array

// assume an array has been
// created and is referred to by
// variable A

for (int i=0; i<A.length; i++) {

// perform some process
// (on A[i])

}

April 12, 2007 Lecture 22

Example
// Create an array of length 6

// with random numbers in the range
// of 5 to 9. Calculate the sum.

April 12, 2007 Lecture 22 a0

