
CS100M  Lecture 17  Mar 27, 2007

1

March 27, 2007 Lecture 17 2

Previous Lecture:
Selection statement
Iteration with while loop, for loop
static methods

Today’s Lecture:
More on methods
Scope of a variable
Intro to objects and classes

Reading:  Chapter 5  (Pay attention to Sec 5.2)

Calling a static method …
… that is in a different class:

classname.methodname(…)
Examples: Math.random()

Math.pow(2.5,2)

… that is in the same class:
methodname(…)

Our class MyRandom has a static method 
randInt, so an example method call within the 
class can be

randInt(3,8)

March 27, 2007 Lecture 17 6

/* = a random integer in [lo..hi]
*/

public static int randInt(int lo, int hi) {
return (int) Math.floor(

Math.random()*(hi-lo+1) + lo);
}

Modifiers
Return type

Method name Parameter list
(if any)

March 27, 2007 Lecture 17 7

Method
A method is a named, parameterized group of statements

modifiers return-type method-name ( parameter-list ) {
statement-list

}

return-type void means no value is returned from the 
method  ⇒ no need for a return statement, but you can have 
one:  return;

There must be a return statement, unless return-type is 
void

March 27, 2007 Lecture 17 8

Method
A method is a named, parameterized group of statements

modifiers return-type method-name ( parameter-list ) {
statement-list

}

parameter-list :  type-name pairs separated by commas

Example: int randInt(int lo, int hi)

A parameter is a variable that is declared in the method

March 27, 2007 Lecture 17 12

Scope of a local variable
A variable declared inside a method is a local
variable.  We say it is “local to the method.”
The scope of a variable is the “area” of the 
program in which the variable is recognized
The scope of a local variable starts at its 
declaration and ends with the block in which 
the variable is declared
Example:  See method main in MyRandom



CS100M  Lecture 17  Mar 27, 2007

2

March 27, 2007 Lecture 17 14

Math class
A collection of common mathematical 
functions and constants
static methods and constants

Belong to the class
An object is not needed to access static
members of a class

import javax.swing.*;

public class MakeFrame {
public static void main(String[] args){
JFrame f= new JFrame();
f.show();
f.setSize(500,200);
int w= f.getWidth();
System.out.println(“Width is " + w);
f.setTitle(“My new window”);
JFrame f2=new JFrame();//another one!
f2.show();  f2.setSize(100,700);

}
}

March 27, 2007 Lecture 17 16

Notice these behaviors:
We can have multiple JFrame objects
We can access the individual JFrames by 
declaring a different name for each
Each JFrame has its own states (e.g., width, 
height, title, position, etc.)
To have JFrame f2 perform some action we 
call f2’s method.  E.g.,  f2.show()
Each object has its own variables and 
methods!

March 27, 2007 Lecture 17 17

Pre-defined class JFrame
Deals with windows (frames) on the monitor
All the predefined classes are collectively called the 
Java API

Classes are grouped into packages.  E.g., java.io, 
java.net, javax.swing

Use the import statement:
import javax.swing.*;

To find out what the classes do, read the API 
specifications:

http://java.sun.com/j2se/1.5.0/docs/api

March 27, 2007 Lecture 17 19

Object & Class—an analogy
Object:  a folder that stores information 
(data and instructions) 

Class:  a drawer in a filing cabinet that holds 
folders of the same type

March 27, 2007 Lecture 17 22

a0

JFrame
0x

0y

setTitle(String)
getTitle()

0height

show()
setSize(int,int)

What is in an object?
(What is in a folder?)

Fields to store data
Instructions for dealing with the object

Class name
(Drawer name)

Reference name
(a unique ID of the folder)

Fields,
Instance
variables

Instance
Methods


