

Announcements

- Prelim II
- 7:30pm, Thursday, March 15
- If you have an exam conflict
- Contact Kelly Patwell (Course Administrator) ASAP
- Prelim 2 topics: Everything through today
- Material introduced next week will not appear on the prelim
- Review session
- This Sunday (see website)
- Review problems are online
- This is the last CIS/EAS 121 lecture

Topics

- Reading: CFile 9, Section 9.3
- We have read online Chapters 1, 2, 3, 4, 5, and 9
- Recall recent topics
- 1-dimensional arrays (vectors)
- 2-dimensional arrays (matrices)
- Characters and strings
- Vectorized code
- Simple plotting
- Today
- Simulation using the random number generator
- Logical arrays

Simulation

- The application of
mathematical and computer models to imitate the behavior of a system
- Usually a real-world system (but not always)
- Useful for design, training \& games
- Matlab provides many tools useful for simulation
- We'll examine some very simple simulations

Example: Simulation of Darts

- Goal: Simulate darts thrown at a simple target to derive an estimate of π
- We did this example earlier using iteration
- Assume hits are distributed uniformly over this 2-by-2 square
- $\mathrm{N}_{\text {in }} / \mathrm{N}=\mathrm{A}_{\text {circle }} / A_{\text {square }}=\pi / 4$

Original Code (for Just One Throw)
close all
hold on
axis('equal');
axis([$\left.\begin{array}{llll}-1 & 1 & -1 & 1\end{array}\right]$);
$p x=2 *$ rand -1 ;
py $=2 *$ rand -1 ;
if $\left(p x^{\wedge} 2+p y^{\wedge} 2<=1\right)$
plot(px, py, 'og');

else
plot(px, py, 'or');
end

Throwing Darts using Vectorized Code

- How can we compute all throws at once by using a nDarts-by-2 matrix?
- How can we determine each throw's distance from origin?
- How can we count how many of the throws are within the circle?
function estimate $=$ approxPi(nDarts)
throws $=-1+2^{\star}$ rand(nDarts, 2$)$
$x=$ throws(: 1);
$y=$ throws(: 2);
dist $=\operatorname{sqrt}\left(x .^{\wedge} 2+y .{ }^{\wedge} 2\right) ;$
in = sum(dist <= 1);
estimate $=4$ * $\mathrm{in} / \mathrm{nD}$ Darts;

Example: Rolling a Fair Die

a fair die and create a histogram of the outcome

- How can we compute all the die rolls at once?
- How can we count how many of each roll occurred? end

Example: Random Walk

- Write a function randomWalk(n) to perform n steps of a random walk in the plane starting from $(0,0)$
- Function header: function randomWalk(n)
- At each step, possible moves are up, down, left, or right
- Display the walk
- This part turns out to be easy
- plot(x, y, '-') where x and y are vectors draws connecting lines from $(x(0), y(0))$ to $(x(1), y(1))$ to $(x(2), y(2))$ to...

Logical Subscripts

- Recall logical arrays
- Occur when you use vectorized relational operators
- Consist of O's (for false) and 1's (for true)
- The Workspace viewer (in the Desktop menu) shows the "class" of each of your variables
- Logical arrays can be used as subscripts!
- The shapes must match
- Examples
$M=[705 ; 246 ; 381]$
$M(M<4)=99$
- All values < 4 are set to 99
$s=$ 'this is a string'
$s\left(s^{\prime} n^{\prime}\right)=$ ' X '
- All letters in the first half of the alphabet are replaced with ' X

Recall: Capitalize First Letters

- We did this before with iteration
- Can use vectorized code instead
- It's not clear that this is better
- Idea: Everything after a blank should be capitalized

$L=\left(s==^{\prime}\right) ;$	\% Find all the blanks
$L=[\operatorname{true} L(1:$ end -1$)]$	\% Shift each blank to right
$S=$ upper(s);	\% This capitalizes everything
$s(L)=S(L) ;$	\% Copies just parts of S into s

Overview of Matlab Topics

- Variables (scalar)
- Assignment statements
- Selection: if, if-else, if-elseif-else
- Iteration: for-loop, whileloop
- User-defined functions - Separate workspaces
- Good programming style
- Built-in functions: max, min, abs, rand, round, floor, ceil, mod, sum, fprintf, sprintf, plot, zeros, ones
plot, zeros, ones
- 1-dimensional arrays (vectors)
- 2-dimensional arrays (matrices)
- Characters and strings
- Vectorized code
- Simple plotting
- Simple simulation using the random number generator
- Logical arrays

